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In this study: The application operators’ perspective
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Selective Forwarding Unit (SFU)
Qzoom @ mediosoup

30 fps \ 15 fps

SFU roles:
(1) Relay audio and video streams
(2) Monitor and adapt media signals

SFUs hard to scale:
(1) Workload hard to predict
(2) Quadratic scaling
3 — 4 parts. = 9 — 16 streams
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SFUs as Packet Processors

' SFU operation is strikingly similar to traditional packet processing

(1) Relay audio and video streams

\

Replicate traffic (Multicast)

(2) Monitor and adapt media signals

\

j Selectively forward traffic (Firewall)
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Fundamental rethink of video conferencing infrastructure
to support long-term traffic forecasts

A novel hardware/software SFU co-design inspired by SDN
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Challenges

Monolithic
Software Architecture

How to disaggregate into
control and data planes?

Complex Multicast
Requirements

How to realize and scale
application-layer multicast?

Misaligned with
Widely-Deployed Standard

WebQRTC
Existing systems — split-proxy
e  Proxy architecture?

e Feedback semantics?
e Transparent rate adaptation?

How to make Scallop
interoperable with WebRTC?
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e PRE entities: e Rate adaptation status e 64,000 replication trees
o Root, L1 + L2 nodes : 24
; . m 2% L1
o L1+ L2 xids e Two-party vs. multiparty ° nodes

e Can change dynamically

How to (i) correctly and (ii) efficiently map VC entities to PRE entities
for each meeting configuration?

e VC entities:
o Meetings, participants
o  Quality layers
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Dynamic Migration

Packet Replication in Scallop: Solution

Optimal Designs

e Non-Rate-Adapted (NRA)
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o Receiver (RA-R)
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Evaluation

0 Scallop processes > 99% traffic in hardware

Protocol/Type

Packets

%

Per sec.

KBytes

%

170,870

166,762

- RR/REMB*

STUN*

Control Plane

Data Plane

174,326

167,066

Total

180,718

167,653

96.46%
packets

v/ Scallop’s control/data-plane split is
effective in reducing software load
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Evaluation

QScaIIop reduces SFU-induced latency: median by 27 X and tail by 8 X
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e Scallop: Novel, hardware-software co-designed SFU

> 99% traffic in
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e Artifacts on O

Control plane + software model of data plane
Hardware prototypes of data plane:
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Wireshark plugin
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Thank You!

Code: https://aithub.com/Princeton-Cabernet/Scallop

o
Contact: satadal.sengupta@princeton.edu

I’m on the market for academic positions

in the US, Canada, and Europe
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Video-Conferencing Infrastructure

Peer-to-Peer Architecture Selective Forwarding Unit (SFU)
O
4

O

200m

> m—

A= 2 A /C%i —

Decreases:
 / e Uplink usage
@)

e Encoding burden
e NAT issues 19

c

AN
/
<

)
)

>

DoF=—ll



© Scalable Semantics-Aware Replication

Packet Replication in Scallop

Straw Man
one tree
per N\ P2 -i
quality =
layer 1
Intel Tofino2: P3 i
* 64,000 replication trees (z)

*2% L, nodes (v)

=)
Scallop Prototype: b § 1-‘
2

« 3 quality layers (k)

' .
Maximize: p = i

» NV # of participants 3
« M # of meetings P2 -i

N = 7/x = 64,000/3 ~ 21,333
M<N

Optimization Other Designs
MiP: B
M1 P2 i ¢ Non-Rate-Adapted (NRA)
M1 +M2 M1 P3 ¢ Rate-adapted/Receiver (RA-R)

______ ¢ Rate-adapted/Sender-Receiver
””” (RA-SR)

o 2-Party (2P)

L,-pruning to diff. L,-pruning to ensure a
between meetings participant does not receive
(max. 2 per tree) their own packets

N<v

M = 27/k =2 % 64,000/3 ~ 42,666

21



© Interoperability with WebRTC

PC Endpoints
e congestion control
e encryption/decryption

e packetization/de-packetization o O
SFU 7 = SFU
So—[ K - 2
i

o

P WebRTC
RTCPeerConnection (PC)

PS
Proxy SFU Architecture @ 4¢— % e §plit-Proxy SFU Architecture
e hardware-friendly e difficult in hardware
e |ow overhead at SFU e lots of replicated logic at SFU
e latency-friendly e introduces latency

22



© Interoperability with WebRTC

Major downstream challenge: Transparent rate adaptation in the data plane

SFU

0 onEE- . KR K-S
Q ] 3 Enhancement Q

Enhancement Layer e e

Layer

Q Trigger

NACKs

Solution: Rewrite sequence numbers at the SFU with an offset

SFU

O ....................... . _“3 ..... - 2_-_>O
Q 5 3 Enhancement D R : Q

Enhancement Layer e @

Layer

S 4-2,5-3 No NACKs!



© Interoperability with WebRTC

Challenge: Naive rewriting causes video freeze during network loss

......................... SFU
Q_n : § Enhancement SRR : N
: Enhancement : Layer
9 Layer l e Q

: S ] 5—-2 Should result

: : Decod

......................... in NACK. but set(;Tlst'ar
doesn’t ]

Observation: When unsure, leaving gap better than hiding one

Hardware-friendly heuristic that never hides loss at cost of possibly unnecessary retxs.

Two variations based on trade-off between unnecessary retxs.

and switch memory (S-LO, S-LM) 24



Evaluation

g.)
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# Max. Meetings (log.)
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0 Scallop improves scalability over software by 7 X to 211X
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~ Worst Case (everyone sends)

s

40 60 80 100
# Participants per Meeting

NRA
RA-R
RA-SR

S-LM
S-LO

Bandwidth

Software

# Max. Meetings (log.)

— best s best
1of Scallop yorst Software \yorst

10° Fr— :

10*

—_
o
w

1M=5 (worst) ~..

11X = ]

... m=20 (worst) =
26X

] T
- m=50 (best)
211X

0 20 40 60 80 100
# Participants per Meeting

e Scale improvement depends on meeting
composition and rate-adaptation characteristics

e Scallop improves scalability 7X to 211 X over
software and always performs better than

software (for a given meeting composition)
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