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Challenge: Provide consistently high quality at scale
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e.g., Video Codecs, Rate-Adaptation Algorithms, Measurement Studies

In this study: The application operators’ perspective
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SFU

30 fps ↘ 15 fps

4

SFU roles:
(1) Relay audio and video streams
(2) Monitor and adapt media signals

SFUs hard to scale:
(1) Workload hard to predict
(2) Quadratic scaling

3 → 4 parts. ⇒ 9 → 16 streams



The SFU Scaling Challenge

Dynamic, high-volume 
workload

SFU

5



The SFU Scaling Challenge

Dynamic, high-volume 
workload

Underprovisioning can 
affect quality massively

SFU

5



The SFU Scaling Challenge

• Reactively autoscale
→ risk harming QoE for users

• Massively over-provision
→ costly and wasteful

Operators left with two options:

Dynamic, high-volume 
workload

Underprovisioning can 
affect quality massively

SFU

5
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• Reactively autoscale
→ risk harming QoE for users

• Massively over-provision
→ costly and wasteful

Operators left with two options:

QoE in MediaSoup when increasing SFU load:Dynamic, high-volume 
workload

Underprovisioning can 
affect quality massively

SFU
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Replicate traffic (Multicast)

(2) Monitor and adapt media signals

      SFU operation is strikingly similar to traditional packet processing

6

SFU

A AB B

B BA A
30 fps

30 fps
B B

15 fps

B BA A
30 fps

SFU

A
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A

Selectively forward traffic (Firewall)
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SFU

A novel hardware/software SFU co-design inspired by SDN

Fundamental rethink of video conferencing infrastructure
to support long-term traffic forecasts

7

Hardware: Relay high-volume
media streams

Software: Handle critical 
but infrequent tasks

    > 99% traffic in 

128K 

     =      

10-200✕ ↑ 

  27✕       ↓   
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Monolithic
Software Architecture

Complex Multicast
Requirements

A AB B
30 fps

A AB B
30 fps

A A
15 fps

Misaligned with 
Widely-Deployed Standard

● Proxy architecture?
● Feedback semantics?
● Transparent rate adaptation?

How to disaggregate into 
control and data planes?

1

How to realize and scale 
application-layer multicast?

2

How to make Scallop 
interoperable with WebRTC?

3

Existing systems → split-proxy
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● Supports dynamic tree pruning
○ Each node can be associated with an 
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✓ Scallop’s control/data-plane split is 
effective in reducing software load
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KBytes %

166,762 99.47

3826 2.28

162,935 97.19

6 ⋘
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15 0.01
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593 0.35
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26.8╳

8.5╳(99%)

          Scallop reduces SFU-induced latency: median by 27✕ and tail by 8✕

16

Evaluation



● Scallop: Novel, hardware-software co-designed SFU

17

Conclusion and Artifacts

> 99% traffic in 128K      =        7-211✕ ↑   27✕       ↓   
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Conclusion and Artifacts

● Artifacts on        
○ Control plane + software model of data plane
○ Hardware prototypes of data plane:

 
○ Wireshark plugin

● Scallop: Novel, hardware-software co-designed SFU

> 99% traffic in 128K      =        7-211✕ ↑   27✕       ↓   



Thank You!
● Code: https://github.com/Princeton-Cabernet/Scallop

● Contact: satadal.sengupta@princeton.edu

I’m on the market for academic positions
in the US, Canada, and Europe

https://github.com/Princeton-Cabernet/Scallop
mailto:satadal.sengupta@cs.princeton.edu


Backup



Video-Conferencing Infrastructure

Peer-to-Peer Architecture

SFU

Selective Forwarding Unit (SFU)

19

Decreases:
● Uplink usage
● Encoding burden
● NAT issues



P2

P3

P1

P1

P3

P2

P1

P2

P3

Straw Man

one tree 
per
quality 
layer

Optimization

• Non-Rate-Adapted (NRA)

• Rate-adapted/Receiver (RA-R)

• Rate-adapted/Sender-Receiver
(RA-SR) 

• 2-Party (2P)

Other Designs

Intel Tofino2:
• 64,000 replication trees (𝜏)
• 224 L1 nodes (𝜐)

Scallop Prototype:
• 3 quality layers (𝜅)

Maximize:
• 𝑁  # of participants
• 𝑀  # of meetings

M2P2

M2P1

M1P2

M1P3

M1P1

M1

L1-pruning to diff.
between meetings
(max. 2 per tree)

L2-pruning to ensure a
participant does not receive
their own packets

M1+M2

100

         Scalable Semantics-Aware Replication2

    Packet Replication in Scallop
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P3

SFU

P1

P2

Proxy SFU Architecture
● hardware-friendly
● low overhead at SFU
● latency-friendly

SFU

P1

P2

P3

H.264

Split-Proxy SFU Architecture
● difficult in hardware
● lots of replicated logic at SFU
● introduces latency

22

RTCPeerConnection (PC)

PC Endpoints
● congestion control
● encryption/decryption
● packetization/de-packetization

3         Interoperability with WebRTC



         Interoperability with WebRTC
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Trigger 
NACKs

SFU
12345

Major downstream challenge: Transparent rate adaptation in the data plane

Enhancement
Layer

Discard
Enhancement

Layer

15 234

No NACKs!

SFU
12345

Enhancement
Layer

Discard
Enhancement

Layer

13 232

4 → 2, 5 → 3

Solution: Rewrite sequence numbers at the SFU with an offset

3



24

5 → 2

Challenge: Naive rewriting causes video freeze during network loss

SFU
12345

Enhancement
Layer

Discard
Enhancement

Layer

Should result 
in NACK, but 

doesn’t

Decoder 
stalls!

12 234

Hardware-friendly heuristic that never hides loss at cost of possibly unnecessary retxs.

Observation: When unsure, leaving gap better than hiding one

Two variations based on trade-off between unnecessary retxs.
and switch memory (S-LO, S-LM)

3         Interoperability with WebRTC



NRA

RA-R

RA-SR

S-LM

S-LO

Bandwidth

Software

m=2
211✕

m=20 (worst)
26✕

• Scale improvement depends on meeting 
composition and rate-adaptation characteristics

• Scallop improves scalability 7✕ to 211✕ over 
software and always performs better than 
software

Scallop
best
worst Software

best
worst

Worst Case (everyone sends)

Best Case (one participant sends)

(for a given meeting composition)

m=5 (worst)
11✕ m=50 (best)

211✕

25

    Scallop improves scalability over software by 7✕ to 211✕

Evaluation


