Continuous In-Network Round-Trip Time Monitoring

Satadal Sengupta
Princeton University, USA
satadal.sengupta@cs.princeton.edu

ABSTRACT

Round-trip time (RTT) is a central metric that influences end-user
QoE and can expose traffic-interception attacks. Many popular
RTT monitoring techniques either send active probes (that do not
capture application-level RTTs) or passively monitor only the TCP
handshake (which can be inaccurate, especially for long-lived flows).
High-speed programmable switches present a unique opportunity
to monitor the RTTs continuously and react in real time to im-
prove performance and security. In this paper, we present Dart, an
inline, real-time, and continuous RTT measurement system that
can enable automated detection of network events and adapt (e.g.,
routing, scheduling, marking, or dropping traffic) inside the net-
work. However, designing Dart is fraught with challenges, due
to the idiosyncrasies of the TCP protocol and the resource con-
straints in high-speed switches. Dart overcomes these challenges
by strategically limiting the tracking of packets to only those that
can generate useful RTT samples, and by identifying the synergy
between per-flow state and per-packet state for efficient memory
use. We present a P4 prototype of Dart for the Tofino switch, as
well our experiments on a campus testbed and simulations using
anonymized campus traces. Dart, running in real time and with lim-
ited data-plane memory, is able to collect 99% of the RTT samples
of an offline, software baseline—a variant of the popular tcptrace
tool that has access to unlimited memory.

CCS CONCEPTS

+ Networks — Transport protocols; Network measurement; Net-
work performance analysis; Programmable networks; In-network
processing; Network management;

KEYWORDS

round-trip time, passive measurement, network monitoring, high-
speed programmable switch

ACM Reference Format:

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. 2022. Continuous In-
Network Round-Trip Time Monitoring. In ACM SIGCOMM 2022 Conference
(SIGCOMM °22), August 22-26, 2022, Amsterdam, Netherlands. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3544216.3544222

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM °22, August 2226, 2022, Amsterdam, Netherlands

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08...$15.00
https://doi.org/10.1145/3544216.3544222

Hyojoon Kim
Princeton University, USA
hyojoonk@cs.princeton.edu

473

Jennifer Rexford
Princeton University, USA
jrex@cs.princeton.edu

1 INTRODUCTION

Round-trip time (RTT) is a key indicator of network performance,
user Quality of Experience (QoE), and routing-protocol attacks [17,
31]. RTT relates directly to Transmission Control Protocol (TCP)
throughput and also heavily influences higher-level metrics such
as video QoE and page load time [6, 10]. Changes in RTTs can
also be symptoms of malicious activities like traffic interception
attacks [17]. In the following examples, RTT monitoring can inform
important network adaptation decisions:

e RTT can be a good indicator of network congestion. When
network performance starts to decline, and multiple paths are
available, the network can reroute traffic to an alternate, less-
congested path. This applies to routing in the wide-area net-
work [3, 22] as well as within data centers [21].

o RTT monitoring is useful for latency-sensitive applications. For
example, multiplayer cloud-gaming applications need to select
the best game server for players spread across different geograph-
ical regions [11, 13]. The network can monitor the propagation
delay (minimum RTT over time) en route to each potential server,
and select the best one for each gaming session.

e RTT can help in inferring the QoE of on-demand video applica-
tions. For instance, an RTT hike can cause an increase in video
startup delay and a decrease in video resolution [10], thus prompt-
ing the service provider to select an alternate server or path.

e RTT monitoring can help reveal routing attacks. Nation-state
actors can eavesdrop on traffic by launching Border Gateway
Protocol (BGP) interception attacks [5]. These attacks cause a
sudden and substantial increase in RTT. The network could detect
and immediately stop sensitive traffic on such occasions.

These use-cases illustrate that the network can perform control
actions—such as dropping, marking, scheduling, or routing traffic—
to rapidly mitigate declining network conditions. To adapt effec-
tively, the network needs RTT measurements that are accurate,
real-time, and actionable. For example, during a traffic-interception
attack, the network should mitigate the attack before the adversary
sees too much of the traffic.

Many popular measurement tools use active probes such as ICMP
pings to estimate the RT T to remote hosts (e.g., iperf3 [15] and RIPE
Atlas [25]). However, probe-based RTT estimates do not capture
application-specific RTTs. Active probes also introduce extra traffic
load and may be blocked by the remote host or network. Instead,
measuring RTTs passively by observing the actual user traffic pro-
vides a more accurate estimate [18]. Passive RTT monitoring at the
end-host requires special software (e.g., a native mobile app) or per-
missions. Instead, monitoring at a vantage point en route to many
end-hosts (e.g., near the gateway router) enables easy aggregation
of network-wide RTTs. Passive RTT monitoring for TCP involves

https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1145/3544216.3544222
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

matching packets with their corresponding acknowledgments.!
RTT measurements of TCP traffic can also be used to infer RTTs for
UDP traffic (e.g., QUIC and RTP-based video conferencing) between
the same end-points or IP prefixes [4, 24].

One prevalent passive-measurement technique estimates a flow’s
RTT based only on the TCP three-way handshake [14]. This ap-
proach can be inaccurate for long flows (e.g., video streaming),
since RTTs can vary significantly over minutes let alone hours.
Also, handshake RTTs tend to be smaller than a connection’s av-
erage RTT [14]. Therefore, we must monitor RTTs continuously,
beyond the initial handshake.

Computing RTTs continuously is hard. The idiosyncrasies of
the TCP protocol—including retransmissions and reordering—can
make some RTT samples inaccurate (Section 2). Software tools
such as tcptrace and pping ensure correctness by maintaining
expensive flow state and performing complex computations [26,
27]. Unfortunately, RTT monitoring in software is computationally
expensive and therefore too slow for networks with high traffic
volumes. For example, DPDK-based targets can process at most
a few million packets per second [1]. Fortunately, the advent of
commodity programmable switches (e.g., the Intel Tofino [2]) and
the P4 language [9] opens up the possibility of monitoring RTTs
and making adaptation decisions directly in the data plane [30].

However, high-speed data planes impose significant constraints
on packet processing in terms of arithmetic operations, memory
size, the number of pipeline stages, and recirculation bandwidth.
The challenges are exacerbated by the aforementioned idiosyn-
crasies of TCP traffic, which require maintaining expensive per-flow
state and performing computations. Additionally, when memory
constraints make it impossible to collect all valid RTT samples, the
monitoring mechanism must scale by collecting a representative
RTT distribution, even under adversarial traffic (e.g., SYN floods).

In this paper, we present Dart (Data-plane Actionable Round-
trip Times), a system that monitors on-path RTTs in real time. Our
key insights are that we: (1) Strategically limit tracking of packets to
only those that can lead to useful RTT samples, and (2) Identify the
synergy between per-flow and per-packet state for efficient memory
utilization (Section 3). We implement Dart in the P4 language on
the Intel Tofino switch (Section 4). We evaluate Dart on traffic from
our campus network and show how our system can detect a traffic-
interception attack within only 63 packet exchanges (Section 5).
We also implement a faithful Python simulator and report Dart’s
performance under different configurations (Section 6). Dart is able
to detect 98% of RTT samples compared to a variant of a software-
based baseline tcptrace [27].

Ethics statement: The campus traces used in this study were
anonymized at the source. All packet traces were inspected and
sanitized by a network operator to remove all personal data before
being accessed by researchers. The traffic interception attack was
carried out using the PEERING testbed [29] with appropriate per-
mission from the maintainers. We performed the attack on a special
prefix allocated to us and between end-hosts controlled by us. This
study has been conducted with necessary approvals from Princeton
University, including its Institutional Review Board (IRB).

ITCP timestamps can also be used for passive RTT monitoring, but that method has
distinct disadvantages (Section 8).

474

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford

Internet
2 X \ _
f / 7&\ \ 4
/ | \)
[\ \ /
%' f‘ \ \ !i'
|/
>/ Z o/ \ 0\ X/
5/ % 8 & % B¢
7T [T T
Monitoring = T e ATy _][_ = ek s
Device -TI T ﬂl h -: I -{ >
y /
[nji /1 " nfi
I 19! /1 19 1 <
I:] T T T 1 1 Vil ==
} h e e !
Campus External Leg Internal External Leg Internal
RTT LegRTT T Leg RTT

Figure 1: Continuous RTT measurement at a monitoring de-
vice by matching TCP data (SEQ) packets with corresponding
acknowledgement (ACK) packets.

2 RTT MEASUREMENT CHALLENGES

In this section, we describe a simple strawman design [12] for
continuous RTT measurement of TCP flows in the data plane (Sec-
tion 2.1). We then discuss how the many idiosyncrasies of TCP raise
correctness (Section 2.2) and efficiency (Section 2.3) challenges that
we address in Section 3.

2.1 Strawman for Measuring RTT

TCP carries a bidirectional data stream between two end-hosts;
bytes in one direction are acknowledged in the other direction by
appropriately setting sequence and acknowledgment numbers in
the TCP header. When placed strategically, a monitoring device can
leverage its location to continuously monitor RTTs by matching
data and ACK packets. The RTT measurements include end-host de-
lays (e.g., processing time and delayed ACKs) in addition to network
delays. We briefly discuss eliminating end-host delays in Section 7.

Seeing both directions of the traffic: To match data packets with
corresponding ACKs, monitoring needs to run on a device that
can “see” both sides of the traffic. As illustrated in Figure 1, we
denote the direction of the TCP data segment as the SEQ (sequence)
direction, and the direction of the acknowledgment segment as the
ACK direction. Interestingly, different portions of the end-to-end
path can be measured separately depending on the direction of
each segment. For example, the RTT computed for a SEQ/ACK
pair between the monitoring device and the Internet constitutes
the external leg of the RTT, whereas that between the monitoring
device and the client within the campus constitutes the internal
leg. The external leg RTT is representative of the wide-area latency
to the application server, whereas the internal leg RTT reveals the
latency introduced by the campus infrastructure. A combination of
consecutive external leg and internal leg RTTs provides the end-to-
end application-level RTT for the client.

Matching data packets with ACKs: Continuous RTT measure-
ment requires a data structure for storing SEQ information until the
corresponding ACK arrives [12], as shown in Figure 2. The table is
indexed by the SEQ packet’s unique identifier—the flow identifier
(4-tuple of client and server IP addresses and TCP port numbers)
and a unique packet identifier within the flow (the expected ACK
number or eACK). An entry is created when a SEQ packet arrives,

Continuous In-Network Round-Trip Time Monitoring

®100 | Flow, eACK Time
nsert
] ow | mo o
2 Match &
©250 Delete
| ACK Packet © P
500©

Figure 2: Strawman design: A hash table with flow ID + ex-
pected ACK as key and timestamp as value. Arrival of a data
(SEQ) packet causes insertion into the hash table, whereas
arrival of an ACK triggers deletion of the matching SEQ en-
try and collection of an RTT sample.

as shown by the entry labelled 1 (white literal within a red circle)
in the figure. When a matching ACK packet arrives, we look up the
SEQ entry using the key (see entry labelled 2), with the source and
destination fields of the 4-tuple reversed. We subtract the entry’s
SEQ timestamp (200) from the new packet’s ACK timestamp (250)
to compute the RTT sample (50).

2.2 Challenges with Correctness

The strawman design can lead to incorrect RTT samples under
certain common conditions that arise in TCP traffic.

Packet retransmission: Packet losses in a TCP connection can
lead to the TCP retransmission ambiguity. Let us say that the sender
sends a packet, which the data structure records as a SEQ entry.
If the sender does not receive an ACK for this packet, then the
sender eventually retransmits the packet, assuming it is lost. At
the monitoring device, we see an exact replica of the existing SEQ
entry—it is not easy to determine which entry (new or old) ought to
be retained in this case. This is because when a corresponding ACK
is received, it may be an ACK of the older packet (which simply got
delayed due to congestion) or an ACK to the newer packet (because
the receiver never saw the older copy due to packet loss).

Packet reordering: A similar ambiguity might arise due to re-
ordered packets. Consider a scenario where the sender sends pack-
ets P1, Py, P3, P4 in order, but the receiver has received in the order
of Py, P3, P4, and Ps, i.e., P5 is reordered by the network. The re-
ceiver would send back ACKs corresponding to the last in-order
packet it has received (also called duplicate ACKs) to the sender.
That is, the receiver would keep ACKing P; until P, arrives. When
P, finally arrives, the receiver would immediately ACK not just Py,
but also P3 and P4 (a cumulative ACK), leading to an erroneously
inflated RTT sample for Pj.

2.3 Challenges with Memory Efficiency

Data planes have limited memory, typically on the order of a few
tens of megabytes [19]. Quirks in the operation of TCP can lead to
inefficient use of this limited memory under the strawman design.

Packets that never receive a matching ACK: When packets
arrive in quick succession, the receiver may send a cumulative
ACK for every n'" packet (rather than per-packet ACKs) to reduce

475

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

Recirculation: s packet still valid?

§3.1

e Valid Packet
Tracker

§3.2.
Packet
Tracker

§33
New Packet RTT Sample

{Flow ID, RTT}

Analytics

{Flow ID, eACK} {Flow ID, eACK,

timestamp, valid}

Figure 3: System architecture: New packets are checked at
the Range Tracker table for validity. Valid packets update
the RT measurement range and then await an ACK in the
Packet Tracker table. Generated RTT samples are sent to the
Analytics module.

overhead. Any SEQ packet that does not receive an explicit ACK,
but is ACKed implicitly by a subsequent packet, would see its entry
stranded in the data structure indefinitely. A similar problem arises
under SYN flooding attacks; if the TCP handshake never completes,
the SEQ packet would be stranded in the data structure.

Packets with large RTTs: SEQ packets may legitimately stay for
a long time in the data structure before seeing a matching ACK,
simply due to network paths with long RTTs.

Handling these two scenarios can be difficult, and expensive. One
approach is to apply a timeout to evict SEQ entries that have not yet
matched an ACK [12]. However, a small timeout would cause bias
against long RTTs, and a large timeout would waste memory on
storing SEQ entries that never receive an ACK. Another option is to
allow new SEQ packets to evict old SEQ entries as needed. However,
this approach also leads to bias against large RT Ts. Instead, we need
more sophisticated strategies that avoid wasting memory on SEQ
entries that cannot lead to valid RTT samples.

3 DART SYSTEM DESIGN

To measure RTTs correctly and efficiently, Dart must avoid tracking
packets that cannot produce valid RTT samples. The challenge is
to make the right decision as each packet streams through the data
plane. Figure 3 illustrates our architecture. To avoid storing SEQ
entries that could cause ambiguous RTT samples, we track the
valid range of sequence numbers for each active flow (Section 3.1).
However, we do not always know in advance that a SEQ entry will
never match a future ACK. Instead, the packet tracker applies a lazy
eviction strategy to reevaluate an old SEQ entry against its flow’s
up-to-date range of valid sequence numbers (Section 3.2). Finally,
the analytics module aggregates the RTT samples (e.g., to compute
the minimum RTT per IP prefix). The analytics module also helps
optimize memory by purging SEQ entries that cannot produce a
useful RTT sample—i.e., a sample that affects the analysis results
(Section 3.3).

3.1 Tracking Valid Measurement Ranges

Ultimately, for every SEQ packet, Dart needs to decide whether to
track the packet or not. To this end, we introduce a Range Tracker
(RT) table before the packet tracker. The RT table is a hash table
with the TCP connection 4-tuple as the key, and a measurement
range as a value. This range is a sequence number byte-range that
can potentially produce correct RTT samples. The left edge of the
window indicates the latest byte that was ACKed by the receiver;
any future arrival of an earlier ACK must have been reordered. The

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

|
I
1
'
1

] h

Left Edge (LE)

1

Right Edge (RE)

(a) Normal operation (SEQ)

1
=

I |

Left Edge (LE)

]

Right Edge (RE)

(b) Normal operation (ACK)

REORDERING! RETRANSMISSION!
Old LE Old RE = New RE = New LE
(c) Retransmission or reordering
|
1
1
1
i S B |
Old LE Old RE NewLE NewRE

(d) Hole in the sequence space

Figure 4: Adjustments to the flow measurement range upon
arrival of new SEQ or ACK packets. space indicates
bytes already covered by the left edge, space indicates
contiguous bytes in flight that can potentially lead to valid
RTT samples, Blue space indicates sequence numbers not
seen by the system.

right edge indicates the latest byte transmitted by the sender; any
future arrival of an earlier SEQ must have been retransmitted.

Normal operation without ambiguities: Under normal circum-
stances, the SEQ packets appear in order, causing the right edge of
the measurement range to move forward, as shown in Figure 4a.
Similarly, ACK packets typically arrive in increasing order, causing
the left edge of the measurement range to move forward, as shown
in Figure 4b.

Operation with ambiguities: Figure 4c illustrates the operation
under TCP ambiguities:

e When a SEQ packet arrives with the expected ACK (eACK)
smaller than the right edge of the measurement range, we infer
a packet retransmission event. For a retransmitted packet, when
an ACK arrives in the future, it is ambiguous whether the ACK
acknowledges the old or the new copy of the SEQ. Furthermore,

476

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford

if selective acknowledgment (SACK) is not enabled, a retrans-
mission might indicate that the receiver has been waiting on
some intermediate SEQ packet(s) before sending out an ACK for
a packet it had already received, thus artificially inflating the
RTT.

e If an ACK packet arrives for the left edge, we conclude it is a
duplicate ACK. We infer a reordering event, since duplicate ACKs
are explicit markers of lost or reordered SEQ packets. Similar to
retransmission, in this case, too, ACKs have been held up at the
receiver thus inflating RTTs.

In both cases, the system infers that the entire measurement range
is now ambiguous. In response, therefore, the system resets the
state: the measurement range is collapsed such that both its left
and right edges are now equal to the highest byte transmitted (i.e.,
the previous right edge). This prevents tracking SEQ packets with
expected ACKs same or less than the right edge—now deemed
ambiguous. After the collapse, the measurement range updates
same as normal operation, or the entry can be safely deleted or
overwritten to make room for a new entry. Only the definition
of the left edge is updated: it now reflects either the highest byte
ACKed (old definition) or the highest byte that was affected by a
retransmission or reordering ambiguity.

Processing ACKs for untracked SEQ packets: We might see an
ACK packet with ACK number either (1) lesser than the left edge or
(2) greater than the right edge. Type (1) indicates an ACK to a SEQ
packet we have already deemed ambiguous and are not tracking
anymore. Our system ignores such ACKs. Type (2) indicates an
optimistic ACK—a form of early ACKing some receivers use to
trick the sender into sending data more quickly [28]. Dart ignores
these ACKs too, meaning it is not misled into collecting artificially
deflated RTTs (see Section 7).

Maintaining a single measurement range: Consider a scenario
where our system encounters SEQ packets with one or more pack-
ets missing in between; e.g., the sender sends P; through P4 but
the system only sees Py, P2, and Py, either due to packet reorder-
ing or drop. Note that these packets pass the check illustrated in
Figure 4a since they are over the right edge and in sequence. Now,
if P3 is dropped, the system will know only upon detecting a re-
transmission. If reordered, P3 arrives after Py, thus filling in the
“hole”. The most optimistic approach in this scenario is to assume
reordering and to store the states for both byte-ranges, i.e., P1-Pa,
and P3-P4. As shown in Figure 4d, this requires storing two mea-
surement windows instead of one. More generally, there could be n
such holes, requiring n + 1 measurement windows. We reason that
such a strategy is too expensive in the data plane, and the system
should use a constant space for this purpose. We, therefore, store
the measurement range for only the highest byte-range ahead of
any hole. In the current example, the measurement window would
point to only P4’s starting and ending byte numbers.

Robust against congestion and SYN attacks: Maintaining a mea-
surement range per flow with the Range Tracker (RT) table helps
significantly with memory efficiency. The mechanism becomes
even more crucial when network congestion happens, where more
reordering and retransmission events occur. Dart is robust to such
situations, making sure the space in both the RT and PT tables is

Continuous In-Network Round-Trip Time Monitoring

Recirculation: Is evicted packet {F3, 600, 40®} still valid? €

Flow Range Flow, eACK Time |
New F1 | [100,200] Valid 2,500 | 80 ©F
Packet F2 |[300, 466 500] Packet F3,700 | 60 ®
{F2, 500}, 300 @ F3 [700, 700] {F2,500, © F1, 200 20 ®
Range 80 ®, valid} Packet
Tracker Tracker

Figure 5: Working of Dart: The system ensures correctness by
consulting and updating the Range Tracker (RT) table before
inserting packet records into the Packet Tracker (PT) table.
Memory efficiency is improved by having packet records
consult the RT before re-insertion, a strategy that enables
lazy eviction.

only used for producing valid, unambiguous samples. The measure-
ment ranges collapse more often, allowing the entries with closed
measurement ranges to be deleted or overwritten. This prevents the
RT table and PT space from exploding. However, this also means
that Dart may collect fewer RTT samples for some flows during
heavy congestion. In order to mitigate this, Dart can be adjusted to
report the frequency of measurement range collapses for a flow as
an indicator of congestion. Dart can also be adjusted to aggregate
RTT samples for flows going to the same subnets (e.g., /24 prefixes)
before analyzing them. The aggregated RTTs will provide a more
complete view of the congestion status of the target subnet.

Dart is also robust against harsh environments, where SYN
flooding attacks are common. Dart does not create an entry in
the RT table or entries in the PT table until after a TCP connection
is established, i.e., after the three-way handshake is complete. That
is, Dart completely ignores SYN and SYN-ACK packets. Therefore,
the memory usage does not explode in either the RT or PT tables
during SYN flooding attacks either. We discuss Dart’s performance
under other kinds of attacks in Section 7.

3.2 Lazy Eviction with a Second Chance

The Range Tracker (RT) table helps with memory efficiency, but the
Packet Tracker (PT) table can still end up storing a SEQ packet that
never matches a subsequent ACK. For example, the receiver might
just cut off the TCP session, never sending an ACK. Sometimes,
cumulative ACKs render certain packet entries unmatched since a
higher byte number has already been ACKed by the receiver. These
unmatched entries occupy expensive space in the PT table; we
would rather reclaim this space for tracking new SEQ packets. The
goal is clear: when a new packet comes and hash collision occurs,
we want to keep an old entry if it is not stale, but otherwise replace
it with the new packet. What is the most accurate and efficient way
to achieve this?

Timeout is biased, garbage collection is expensive: One obvi-
ous way to deal with this issue is to associate a timeout with each
entry [12] in the PT table. However, packets with naturally long
RTTs can suffer from undersampling under this arrangement, on
top of the challenge for finding the right timeout value. A more
accurate alternative is to actively scan the PT table for stale entries

477

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

when an ACK arrives. For example, there can be an active garbage
collector that periodically polls the RT table and remove stale entries
from the PT. This strategy, however, is far too expensive, especially
if implemented in the data plane.

Lazy eviction: The goal is to create an efficient mechanism that re-
places entries that are indeed stale and do this without bias. Ideally,
this should also happen without additional control-plane interac-
tion, as that would introduce extra overhead. Our first observation
is that an entry does not need to be evicted until there is actually
a hash collision with a new entry. We employ this lazy eviction
strategy: this gives an entry, no matter how old it is, a chance to
produce a valid sample as long as a new entry does not cause a
hash collision.

Recirculation for a second chance: Now, when a new entry
indeed causes a hash collision with an old entry, blindly replacing
the old entry with a new one creates a bias towards samples with
short round-trip times. This is because the old entry might have still
produced a valid sample had it waited long enough. We indeed want
to keep the old entry if it is still valid. The challenge is, however, that
we do not know this at the moment when the hash collision happens.
To address this, Dart recirculates the old entry, sending it back to
the start of the ingress pipeline through the RT table again. This
allows us to re-validate the entry against the measurement range
in the RT table, thus checking for staleness. Meanwhile, we do not
want to lose the new entry. Therefore, Dart stashes the new entry
in the space that the old entry was occupying until the recirculated
old entry comes back. To summarize, every time a new SEQ packet
entry contends for space with an old entry due to a hash collision,
(1) we allow the new entry to get inserted, (2) evict the old entry,
and (3) recirculate the old packet to re-consult the Range Tracker
(RT) table to determine its staleness. If stale, we allow the old entry
to self-destruct; if not, we treat it as a new packet entry and repeat
the above process.

This process is illustrated in Figure 5. The new packet for flow F2
arrives with expected ACK no. 500 at time t=80 (event 1, marked by
the white literal in a red circle). It causes the measurement range to
expand from [300, 400] to [300, 500] since it is valid (event 2). The
corresponding packet record with key (F2, 500) and timestamp value
80 arrives at the PT table and collides with an existing entry (F3, 600,
t=40) (event 3). The new entry gets stored (event 4) while the old
entry is recirculated to the RT table for re-validation (event 5). The
highlight of this mechanism is that it provides another chance to the
packet that was evicted from the PT table instead of just discarding
it right away. A TCP flow with naturally long RTTs, for example,
will be preserved by such a mechanism. While recirculations are
useful in this case, they add overhead since packet recirculation
bandwidth is limited in the data plane. Later in the paper, we discuss
a method to reduce recirculations by maintaining a small cache of
heavy flows after the RT (Section 7).

Preventing infinite eviction loops: One might worry about an
eviction loop: the old entry that was kicked out recirculates and
gets re-inserted to the same index again, which kicks on the new
entry, causing the old entry to get evicted again in the next iteration,
and so on. To address this, we implement a method of detecting
a “cycle”, i.e,, when the same entry that got inserted once ends up
getting evicted and tries to re-insert itself. The method is to always

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

compare the new entry with the currently evicted entry before
trying re-insertion. In Dart, we do this cycle detection before any
recirculation. As another safeguard mechanism, we also set a limit
the number of recirculations per SEQ packet.

3.3 Tracking Only Useful Samples

The analytics module is a component that can be customized based
on the analytics the operator is interested in, using the RTT sam-
ples produced by the Range Tracker (RT) and Packet Tracker (PT)
tables. In some cases, this analytics module can also help reduce
the memory pressure on both tables and also reduce recirculations.

Example: RTT tracking with min-filtering: Consider a use
case where an operator is interested in monitoring the propagation
delay with hosts in a certain IP prefix. The high-level goal is to
detect abnormal changes in the round-trip time, like an upward
spike, when communicating with the IP prefix in real time. The
operator, however, does not want to get an alert with outliers—
only when there is an obvious, consistent hike. A good example
is detecting nation-state BGP hijacking, which likely increases the
end-to-end delay significantly. One effective way to implement this
in the analytics module is to use min-filtering: instead of monitoring
every single RTT sample, keep track of the minimum RTT value in
a time window. If the minimum RTT value significantly increases
from one time window to the next one, it is worth notifying the
operator through an alert.

Preemptively discard useless samples: Now, since the analytics
module is only interested in the minimum RTT value within every
time window, the system can purge SEQ packets that will surely
produce RTT samples that are longer than the currently maintained
minimum in the given window. More precisely, when a SEQ packet
is kicked out from the PT table, the saved timestamp of that SEQ
packets can be compared to the current timestamp to see if it has a
potential to produce a sample smaller than the current minimum. If
not, there is no need to recirculate this packet entry: it will, at best,
produce a useless sample anyway. This check can happen at the
analytics module before the system decides to recirculate the packet
back to the RT table. Thus, the analytics module can further limit
the resource usage only to the packets that will indeed produce
RTT samples that are useful to the analytics module.

4 HARDWARE SWITCH PROTOTYPE

In this section, we present our implementation of Dart on the Intel
Tofino programmable switches. One version of the prototype runs
in the ingress pipeline of a Tofino2 switch, and the other spans
the ingress and egress pipelines of a Tofinol switch. While the
Tofino2 version is more efficient and leaves the egress free for
network operators to deploy their own analytics and adaptation
mechanisms, the Tofino1 version enables us to deploy Dart in our
campus testbed. Our code is open-source.? The resource usage
of the two prototypes is summarized in Table 1. We discuss our
hardware implementation challenges and prototype features in this
section, and then describe our experience deploying our prototype
in the wild in Section 5.

Zhttps://github.com/Princeton-Cabernet/dart

478

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford

Resource Type | Tofino 1 | Tofino 2
TCAM 4.9% 2.9%
SRAM 13.9% 1.4%
Hash Units 16.7% 35.8%
Logical Tables 47.9% 36.9%
Input Crossbars 15.4% 10.1%

Table 1: Data Plane Resource Usage in the Tofino (1 and 2)

Accessing memory sequentially: Our implementation requires
that actions on the values of RT and PT table records happen se-
quentially. For example, a RT record is updated only when the flow
signature matches with that of an incoming packet; thereafter, we
first set the right edge to the maximum of the existing right edge
and the incoming eACK, and then compare the eACK and sequence
number with the existing right edge to decide the value of the left
edge (Figure 4). Since memory once accessed cannot be revisited
without recirculation in the data plane, we spread the RT and PT
tables each across 3 component tables, and therefore 3 stages.

Constrained signature wordsize: In order to determine with
complete accuracy whether a hashed location in the RT or PT
contains the intended flow 4-tuple record, we need to store all 12
bytes (4 bytes x 2 for IPv4 addresses + 2 bytes x 2 for TCP port
numbers) as part of the record key. However, the wordsize of a
register key is constrained in the data plane; therefore, we use
hash functions to reduce the flow signature to a fixed 4-byte hash.
The downside is that hash collisions are possible (not significantly
though, as our results suggest).

Computing the payload size: Computing the TCP payload size
in the naive way, i.e., by subtracting the IP and TCP header lengths
from the total IP packet length, is expensive in the data plane—it
consumes multiple stages due to multiple arithmetic operations
involving 32-bit integers. Instead, we pre-compute the TCP payload
size for common values of the IP header length (5 bytes), the total IP
packet length (40-1480 bytes), and the TCP header length (5-15 bytes)
and store them as entries in a lookup table—this saves two Tofino
stages. This is purely an optimization and can be easily reversed to
support any values of the aforementioned header parameters.

TCP sequence number wraparound: TCP sequence numbers
can wrap around, i.e., restart from zero. Our prototype detects and
handles this case gracefully by resetting the RT left edge to zero.
This foregoes the opportunity to collect valid RTT samples at the
highest sequence numbers in favor of a simplified implementation.

Reordering among recirculated records: Since packets are pro-
cessed in a streaming fashion in the data plane, there is a possibility
that a more recent packet pertaining to a flow arrives and gets
processed by Dart before a recirculated flow record for the same
flow has had a chance to make a re-entry into the ingress pipeline.
If not handled, this could render certain RTT samples inaccurate.
We mitigate this by checking if a recirculated record matches the
current flow entry and updating it if so, ensuring only one (the
latest) record exists for a flow in the RT at a time.

Continuous In-Network Round-Trip Time Monitoring

Northeastern
University (USA)

1.0

0.8

0.6

CDF

Path hefore
attack

0.4

0.2
| = Wired network (1.66 M samples)
00! Wireless network (11.12 M samples)
0 10 20 30 40 50 60
Campus Internal Leg RTT (ms)

—a

70 80 Princeton

University (USA)

Figure 6: Difference in distribution of in-
ternal leg RTTs between wired and wire-
less subnets in the Princeton campus.

Specifying target flows: Dart allows the operator to install rules
to track any subset of flows directly from the control plane. There-
fore, it is not necessary to recompile or redeploy Dart to change
the set of flows it tracks. The flows can be specified by source and
destination IP addresses or prefixes, and source and destination
port numbers or port number ranges.

Monitoring the external and internal legs simultaneously:
We describe in Section 2.1 how it is possible to compute RTTs on
both the external leg (i.e., monitor to the Internet) and the internal
leg (i.e., campus client to monitor). However, monitoring both legs
simultaneously in the data plane is a challenge since the same
packet has to be processed both as a SEQ and an ACK packet. We
are able to do this by first processing the packet as a SEQ packet,
but then recirculating it with a custom header that remembers the
relevant ACK headers (i.e., 4-tuple and ACK number).

5 DART IN THE WILD

In this section, we describe our experience of installing Dart on a
hardware switch and replaying real traffic on it.

5.1 RTT Monitoring on Campus Traffic

We run the Tofinol prototype of Dart on a hardware switch in
our lab. We replay an anonymized packet trace collected on the
Princeton University campus on 7 April 2020 for 15 minutes (at 3
PM local time). This trace was collected during a period of heavy
load with an average rate of 240,750 packets per second. The trace
is replayed using tcpreplay from a server connected to the switch.
The RTT reports are captured at another server using tcpdump.

Wired network vs. Wireless network RTT: For this experiment,
we replay the trace and monitor the RTTs of the internal leg (campus
host to switch) for two campus subnets—one wireless and another
wired. Dart collects 11.12M RTT samples for wireless traffic and
1.66M for wired traffic, as most on-campus users connect via mobile
devices. Figure 6 shows the difference in the distribution of RTTs
across the two subnets. RTTs for wireless connections are uniformly
larger than those for the wired connections. More than 80% of
internal RTTs for the wired subnet are less than 1 ms, whereas
less than 40% of RTTs for the wireless subnet are so; in fact, for
wireless traffic, the internal RTT exceeds 20 ms for more than 20%

_—

Figure 7: Traffic between Princeton (USA)
and Northeastern (USA) intercepted by
an attacker in Amsterdam (Netherlands).

479

Path afier

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

—e— P4RTT RTT Samples

200 Minimum RTT (Window=8) A

Attack Suspected

% Attack Confirmed W‘ %
Amo »

E 100 |
&

P 0

‘-l 0

30

2150
£

attack

25 35 40

Amsterdam Time (s)

(Netherlands)

Figure 8: Interception attack is detected
within 63 packets by observing change in
minimum RTT over windows of samples.

of the samples. Often, the internal latency for wireless users rivals
the wide-area latency. For example, for wireless clients accessing
YouTube, the 90th percentile end-to-end RTT is 14 ms, including 8
ms of intra-campus delay. In contrast, the wired clients have a 90th
percentile RTT of 9 ms with just 2 ms of intra-campus delay.

5.2 Interception Attack Detection

Next, we demonstrate the ability of Dart to detect a long-distance
interception attack in the wild.

Attack setup: First, we launch an ethical traffic-interception at-
tack using the PEERING testbed [29] and following the technique
described by Birge-Lee et al. [7]. PEERING runs geographically
distributed ASes to enable researchers to make real BGP announce-
ments for controlled and isolated traffic. We control one PEERING
site each at Northeastern University and Princeton University in
the USA via co-located Amazon AWS server instances (Figure 7).
We announce our PEERING-provided /23 prefix from Northeastern,
and establish a TCP connection from Princeton with an IP address
from the announced prefix. We then use a site at Amsterdam (ad-
versary) to announce a more specific /24 prefix with a number of
carefully selected BGP community attributes, such that traffic to
the IP at Northeastern (victim) is now rerouted through it. We cap-
ture the traffic trace of this attack at Princeton. Our threat model
assumes that Dart is close to one of the end-hosts and can see both
sides of the traffic, both pre-attack and post-attack. Therefore, our
detection works irrespective of the direction of traffic (data or ACK)
intercepted by the attacker.

Attack detection: Second, we deploy our Dart Tofinol prototype
on a real hardware switch in our campus testbed. We replay the
trace of this interception attack through this switch. Dart collects
raw RTT samples and sends them to a collection server, where
a simple, threshold-based change-detection algorithm runs. The
detection algorithm monitors propagation delay by computing the
minimum RTT in a window of 8 consecutive raw RTT samples. An
attack is suspected when the minimum RTT rises abruptly between
consecutive windows, but confirmed only when the change sustains
for another window. Figure 8 illustrates this mechanism: the attack
takes effect at t=~36 seconds, as can be observed from the abrupt
rise in collected raw RTT from ~25 ms to ~120 ms (blue line). Based
on the minimum RTTs (orange line), an attack is suspected almost
immediately (orange star) and confirmed in the next window (red

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

E 1.0
~ teptrace(+SYN)

E 0.8
o

G

< Dart(+SYN) 06
g w0
E a

3 o

: teptrace(-SYN) 0.4
g 0.2
|

24 0.0
0 0 20 40

2 4 6 8
No. of RTT samples (million)

(a) RTT sample counts

Round-Tri

6

(b) CDF of RTTs

0 80
p Time (ms)

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford

—— tcptrace(+SYN)
= = tcptrace(-SYN)
=+ Dart(+SYN)

=+ Dart(-SYN)

CCDF (1-CDF)

—— tcptrace(+SYN)
— = tcptrace(-SYN)
— - Dart(+SYN)

-+ Dart(-SYN)

106

10% 10°

10%
Round-Trip Time (ms)

100 120

(c) CCDF of large RTTs

Figure 9: tcptrace vs. Dart with infinite memory: Dart collects >82% RTTs as tcptrace and matches its RTT distribution closely.

1.38 M
100
80
)
o
3 60
=}
)
2
o 40
[=9)
20
0.3 M
0 All Incomplete All Handshake
Connections Handshakes RTTs RTTs

Figure 10: Skipping handshake packets: We can save memory
for 72.5% of the connections while missing only 4.2% RTTs.

star). Only 63 packets are exchanged in 2.58 seconds between the
interception attack taking effect and Dart confirming the attack.

6 EVALUATION

In this section, we evaluate Dart using a faithful simulator written
in Python. We replay a campus trace collected on April 7, 2020,
for this evaluation. The trace was captured using a packet broker
service near the campus gateway router. The trace contains 1.38M
TCP connections and 135.78M TCP packets over a 15-minute dura-
tion. As mentioned in Section 5, Dart can measure RTTs for either
the external leg (monitor to Internet) or the internal leg (campus
host to monitor), or both. In the following experiments, we limit
our RTT measurement to the external leg only.

6.1 Dart Without Memory Constraints

We compare Dart with our baseline tcptrace—a software tool used
to compute RTTs on packet traces [27]. For this experiment, we
assume that Dart is not bottlenecked by the memory available in
RT and PT tables, and that the available memory is fully associative
(i-e., records can be stored in any available memory location).

RTT sample count: Figure 9a illustrates the number of RTT sam-
ples captured by Dart vs. tcptrace (SYN in the figure is short-hand
for packets where the SYN flag is set, i.e., SYN and SYN-ACK). For
the case where we collect handshake RTTs, i.e., tcptrace(+SYN)

480

and Dart(+SYN), Dart is able to capture 7.53M RTT samples vs.
9.12M samples collected by tcptrace. The difference is explained
by the fact that Dart only keeps track of the latest contiguous
unambiguous bytes when a hole appears in the sequence space,
whereas tcptrace keeps track of all contiguous byte-ranges. Fur-
thermore, unlike Dart, tcptrace collects all valid RTTs when se-
quence numbers wrap around; additionally, tcptrace sometimes
breaks one RTT sample into two (causing an inaccuracy) due to
a design flaw 3. In the case where handshake RTTs are foregone
by ignoring SYN and SYN-ACK packets, i.e., tcptrace(-SYN) and
Dart(-SYN), Dart captures 7.21M RTT samples vs. 8.66M samples
captured by tcptrace.

RTT distribution: Figures 9b and 9c show the distribution of the
RTTs captured in the four settings discussed above (i.e., tcptrace
vs. Dart and +SYN vs. -SYN). Figure 9b shows the distribution
(CDF) of RTT samples with values between 0 and 125 ms. Figure 9¢
focuses on the tail and shows the complementary CDF (CCDF) of
RTTs larger than 100 ms. The median RTTs for tcptrace(+SYN) vs.
Dart(+SYN) (14 vs. 13 ms) and for tcptrace(-SYN) vs. Dart(-SYN)
(15 vs. 13 ms) are comparable. There is a skew in the 95th percentile,
as can be observed from Figure 9b—tcptrace(+SYN) has it at 57
ms vs. 39 ms in Dart(+SYN) (similarly, 62 ms in tcptrace(-SYN) vs.
39 ms in Dart(-SYN)). The distributions converge at the tail, with
99th percentile at 215 ms for both +SYN settings and 218 ms for
both -SYN settings. We also observe that the large majority of RTT
samples (96.3%) fall between 10 ms and 100 ms (Figure 9b). The
tail, however, is long, and RTTs as large as 100 seconds or more
are also seen (Figure 9c). Further analysis revealed that there are
instances in the trace where a data packet does not receive an ACK
for many seconds before a TCP keep-alive finally ACKs it. This
may be due to the fact that our vantage point misses the original
ACKs (with short RTTs) to these data packets, or a behavior of TCP
where only a distant keep-alive acknowledges the last seen data
packet. In any case, Dart collects the long RTTs that tcptrace also
collects, demonstrating a lack of bias against large RTTs.

Handshake RTTs: In order to understand the impact of foregoing
handshake RTTs (i.e., by ignoring packets with the SYN flag set), we
compare the relative memory savings obtained vs. the number of

3tcptrace divides the sequence space (0 to 23! — 1) into four quadrants. We observed
that when an RTT sample is generated for a packet that spans two consecutive quad-
rants, tcptrace wrongly generates an extra RTT sample for the part of the packet
that ends in the earlier quadrant.

Continuous In-Network Round-Trip Time Monitoring

-
=)
S

-~ Max. in [5, 95]th percentile
+\ 50th percentile
—* - 95th percentile
-+k-+ 99th percentile

o
=3

90

I
S
A\

'S
o

80

70

)
=]

60

=
RTT Count Fraction (%)

RTT Collection Error (%)
w
o

=)

210 211 212 13 14 215 216 17 218 219 20 50

PT Table Memory Size

(a) RTT collection error

210 11 12 213 214 15 16 17 218 219 220
PT Table Memory Size

(b) Fraction of RTT samples collected

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

Recirculations Per Packet
o o o o o (=] o
S I)
@ o N - o [} (=3

o
1=}
=

210 11 12 13 ld 15 16 17 18 219 220
PT Table Memory Size

(c) Recirculations incurred per packet

Figure 11: Performance of Dart with a large RT table and varying PT table-size.

100
-@- Max. in [5, 95]th percentile

10 4 50th percentile
= - 95th percentile
«+++ 99th percentile

0 e R T T e e

90

80

70

60

RTT Collection Error (%)
RTT Count Fraction (%)

50

2 3 4 5 6 7
No. of Stages in PT Table

(a) RTT collection error

e
o
=1

e
©

e
o

3 4 5 6 7
No. of Stages in PT Table

(b) Fraction of RTT samples collected

Recirculations Per Packet
o o o ©
o = = s
@ (=] N -

o
1=
=3

2 3 4 5 6 7
No. of Stages in PT Table

(c) Recirculations incurred per packet

Figure 12: Performance of Dart with a large RT, fixed-size PT, and varying no. of PT stages.

samples foregone. Figure 10 illustrates that around 1M out of 1.38M
TCP connections (72.5%) seen in the trace are due to incomplete
TCP handshakes! Ignoring SYN and SYN-ACK packets, therefore,
provides significant advantages in terms of memory in the RT table,
since otherwise these flows would occupy much of the table. The
relative loss in terms of number of RTTs collected is much less—
Dart misses only 0.32M out of 7.53M samples (4.2%).

6.2 Impact of Table Configurations

In the ensuing experiments, we remove the assumptions that the
tables are fully associative or of unlimited size. True to the prototype
that can run on a hardware switch, the RT and PT tables are now
one-way associative (i.e., only one memory location can be accessed
per packet without recirculation). As a result, we grapple with
contention for memory and recirculations (Section 3).

Baseline: Since Dart(-SYN) from the previous subsection operates
with unlimited and a fully associative memory, it is the best Dart
can do. The following experiments, therefore, treat Dart(-SYN)’s
performance—in terms of the number of RTT samples collected
and the resulting RTT distribution—as the baseline. We notice that
Dart(-SYN) is actually set up similarly to tcptrace, except for the
fact that the amount of state it can track for each flow is constant, e.g.,
one measurement range. For this reason, we view it as a variant of
tcptrace with constant space—we refer to it as tcptrace_const.

Performance metrics: We evaluate Dart’s accuracy along two
dimensions: (1) The closeness of Dart’s RTT distribution with

481

tcptrace_const’s RTT distribution—quantified by the RTT col-
lection error, and (2) The number of RTT samples collected by
Dart as compared to the number of RTT samples collected by
tcptrace_const—quantified by the fraction of RTT samples col-
lected. We define the RTT collection error as the error at the pth
percentile for p = {50, 95,99}. For a given p, the error at the pth
percentile is computed as the difference between the p!” percentile
RTT of tcptrace_const and Dart, normalized by the former. In
this work, we report the 50 h and 95th percentile RTTs since these
are considered important latency characterization metrics, and the
99t percentile RTT since it represents Dart’s estimation of the
largest RTTs collected. We also report the maximum error seen for
any p between 5 and 95, which serves as a measure of the worst-case
accuracy. We define the fraction of RTT samples collected as the ratio
of the number of RTT samples collected by Dart to the number of
RTT samples collected by tcptrace_const (expressed as a percent-
age). We contrast these two accuracy metrics with the recirculation
overhead metric, recirculations incurred per packet. It is defined as
the ratio of the total number of recirculations incurred to the total
number of packets processed. In the following experiments, Dart’s
performance refers to the set of these three metrics.

Impact of the PT table size: In this experiment, we try to deter-
mine the right size for our one-way associative PT table. First, we
set the RT table size to a number large enough (i.e., 22° in this spe-
cific case) to accommodate all flows in our campus trace. While this
number is large, we reason that an operator would only monitor a
subset of flows at a time, and therefore, during actual usage, the RT

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

100
-~ Max. in [5, 95]th percentile

$ 10 50th percentile 9

P ~ - 95th percentile ~ 90
° «++ 99th percentile g
= B
= 5]

o & 80
5 —~
] =
5 =
=1

2] 70
8]

E £ 60
&= 24

50

1 2 3 1 5 6 7 8 1 2 3

Max. Recirculations Allowed

(a) RTT collection error

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford

4

Max. Recirculations Allowed

(b) Fraction of RTT samples collected

3
¢
[
o

o o

2 S

@ o

e
=Y

Recirculations Per Packet
o o (= o
o = ==
== o N -

o
o
=

5 6 7 8 1 2 3 4 5 6 7 8
Max. Recirculations Allowed

(c) Recirculations incurred per packet

Figure 13: Performance of Dart with a large RT, a PT with a fixed size and no. of stages, and varying no. of allowed recirculations.

memory requirement would be small enough to fit in one stage of
the Tofino (if not, the RT table could be expanded to a multi-stage
table). Second, we allow recirculations—we set the maximum al-
lowable recirculations to 1 in the PT table. Now, we vary the PT
table size between small (21° = 1,024) and large (22° = 1, 048, 576)
and evaluate the impact on accuracy of RTT collection. Figure 11a
shows the RTT collection error. We observe that, as expected, the
error goes down as the PT table increases in size. The error at p = 95
is the least, followed by the error at p = 99, illustrating that Dart is
not biased against large RT Ts. Figure 11b shows that the fraction
of RTT samples collected increases with increasing memory size,
as expected. In fact, Dart collects more than 90% samples with a
relatively small PT size (i.e., 2! = 8,192). We also observe from
Figure 11c that 16 recirculations happen per 100 packets for a small
PT table (i.e., size= 210), which goes down to 10 and lower as we
increase the PT table size. For the next experiment, we fix the PT
table size to 217 = 131,072: this is the lowest PT table size that
results in less than 5% error for any value of p between 5 and 95
and collects more than 99% RTT samples.

Impact of the number of PT table stages: We explore the idea
of implementing a multi-stage PT table, i.e., a k-way associative PT
table. While a multi-stage PT table may be difficult to fit in Tofino1
or in the ingress pipeline of Tofino2, we can implement it in the
egress pipeline of Tofino2. We fix the RT table size to large enough
as before, the PT table size at 2!7, and maximum recirculations
per packet at 1. We now try to determine the best value of k to
divide the PT table into. Figure 12a shows the RTT collection error
against k. We find that the error at p = 95 and p = 99 stay stable
around zero, whereas the errors at p = 50 and the maximum error
between p = 5 and p = 95 increase as soon as we divide the PT table
memory into more than 1 stages. The error increases in the negative
direction (i.e., Dart starts overestimating the median RTT). This can
be attributed to the fact that some smaller RTT samples are missed
when there are more stages, since there is just enough space for
records with large RTTs to get inserted but never get evicted (since
older records are preferred). We see a similar effect on the fraction of
RTT samples collected (in Figure 12b) and the recirculations incurred
per packet (in Figure 12c)—these metrics get significantly worse
when the PT table is divided into 2 stages, and remain bad as the
number of stages is gradually increase to 8. We determine from this
experiment that simply dividing the PT table into multiple stages,
without adding more memory, worsens performance. In the next

482

experiment, we explore whether allowing more than 1 recirculation
per packet might help a multi-stage PT.

Impact of the maximum number of allowed recirculations:
In this experiment, we again ensure that the RT table is large enough,
fix the PT table size to 217, and divide it across 8 stages. This time,
we allow the maximum number of recirculations per packet to vary
between 1 and 8. Our intuition is that allowing the hash-collided
PT records to pass through the PT more times might help them find
alternate locations to live on in the PT during memory pressure.
Figure 13a shows that the RTT collection error rapidly improves as
more recirculations are allowed; for a 8-stage PT, 4 recirculations
bring down the error to nearly zero. We also see from Figure 13b
that the fraction of RTT samples collected goes up to 99% and beyond
when 4 or more recirculations are allowed. This improvement is
achieved without the number of recirculations incurred per packet
ever going up beyond 0.16, as shown in Figure 13c. We conclude that
we can take advantage of spanning the PT across multiple stages of
the Tofino—thereby increasing the total memory size beyond what 1
Tofino stage would allow—and still ensure good performance, if we
also allow more recirculations per packet. This good performance
is achieved without the consumption of significant recirculation
bandwidth (16 recirculations per 100 packets in the worst-case).

7 DISCUSSION

Limitations of Dart: While Dart is designed for accuracy in the
face of TCP ambiguities, the tool cannot handle all situations accu-
rately. First, if Dart starts (or restarts after eviction) tracking a flow
that is already in progress, it may not have enough information
to infer retransmission or reordering. For example, what the RT
table sees as a new SEQ packet may actually be a retransmitted
copy of a SEQ packet sent before Dart started tracking the flow.
Second, reordering may happen downstream from the monitoring
device; in such cases, not just Dart but no other RTT measurement
tool can measure RTT accurately, since the vantage point is never
aware of such an event. Apart from inaccuracies, we may some-
times conservatively close the measurement range when it could
have collected valid samples. When we see an ACK packet that
acknowledges the left edge of the measurement range, we infer a
duplicate ACK and collapse the range. However, since the left edge
does not always indicate the highest byte ACKed, but can indicate
the highest byte affected by a retransmission or reordering event,

Continuous In-Network Round-Trip Time Monitoring

the decision to close the measurement range conservatively may
cost us some valid RTT samples. Similarly, we forego valid sam-
ples at the uppermost sequence numbers when a sequence number
wraparound event happens; however, such events are rare—only 4
in our 15-minute campus trace. Sometimes, when the monitoring
device does not see the last ACK in an exchange—either because of
a packet drop at the device or a connection that closed abruptly—it
may continue holding the RT and PT table records indefinitely,
since we favor older entries over newer ones. Certain attacks can
exploit this vulnerability by leaving a large number of data packets
unacknowledged. A timeout mechanism for the RT table, with a
very large timeout value (in seconds) could help.

Minimizing recirculations with approximation: Packet recir-
culation helps to produce valid samples in the face of memory pres-
sure. Packet recirculation, however, is additional overhead. While
we realize that some recirculations are unavoidable, those should
be minimized. One idea is to maintain a copy of the original RT
and put it after the PT table. This would allow the validity check to
happen at the end of the pipeline instead of recirculating the packet
back to the start of the pipeline. Yet, maintaining the consistency
between the original RT and the copy is a challenge. Due to the
sequential nature of the data plane’s packet-processing pipeline,
they might become out of sync even for a short amount of time. For
example, a new packet might have updated the original RT table
to a new state just before an evicted entry reads the second RT
table, making the tables inconsistent. This subsequently implies
that the copy of the RT is approximate in nature. Moreover, such an
approach requires additional memory space. Thus, this approach
trades recirculation overhead with memory space.

End-host delays: When a TCP receiver anticipates having some
data of its own to send, it may wait until a certain number of bytes
accumulate and then piggyback the ACK along with the data—a
strategy known as delayed ACKing. The waiting time is reflected
in the RTT samples collected by measurement tools like Dart and
tcptrace. Some use cases may, however, require RTTs that do not
include this end-host delay. Delayed ACKs are notoriously difficult
to identify by a monitoring device in the end-to-end path. This is
because there is no known way to infer whether an ACK has been
intentionally delayed by the receiver. Delayed ACK implementation
is known to vary widely across device types and operating systems.
In fact, the QUIC protocol has proposed provisions to explicitly tag
delayed ACKs to alleviate such measurement ambiguities [20]. Still,
even without explicit detection of delayed ACKs, simple techniques
such as “min. filtering” (e.g., computing the minimum RTT sample
over a time window, as discussed in Section 3.3) can be quite effec-
tive at separating propagation delay along the network path from
end-host delays such as delayed ACKs.

Extending Dart to QUIC and IPv6: The QUIC protocol does
not expose sequence and acknowledgment numbers as TCP does.
Therefore, it is not possible to measure RTTs for QUIC packets
using the same mechanism as Dart. QUIC, however, uses a spin bit
to indicate reversal of direction by a sender or receiver [20]. It is
possible to track this bit and compute RTTs; however, this is fraught
with challenges. First, the spin bit allows the measurement of a
maximum of one valid RTT sample per congestion window. Second,
inferring retransmissions or reordering is not possible using only

483

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

the spin bit. Nevertheless, RTTs collected using the QUIC spin bit
can augment RTTs collected for TCP traffic to the same destination.
Dart can also be extended to work with IPv6 by adjusting how the
payload size is computed. However, since the 4-tuple size is much
larger in IPv6, and the RT flow signature size is fixed, Dart may
encounter more hash collisions.

Identifying bufferbloat: In our campus trace, we observe some in-
stances of high RTT variability on connections with remote clients.
Further analysis reveals that some of these remote hosts were con-
nected to a cellular provider—these hosts are presumably cellular
devices connecting to servers located on our campus. The RTT
patterns are indicative of bufferbloat at the remote end. We find
these patterns interesting and posit that Dart can be used to detect
bufferbloat events in real time, due to its ability to monitor RTTs
on-path and continuously. Detecting bufferbloat (and networks
prone to it) is useful for characterization from remote locations.

Deployment at multiple on-path vantage points: Dart can be
deployed at multiple vantage points (VPs) on the route between
two end-hosts. The advantage is that the total end-to-end RTT
could then be divided into multiple legs (i.e., host 1 to first VP, first
to second VP, and so on, leading up to host 2). One use case is
capturing wide-area RTTs free from end-host delays like delayed
ACKs. Another use case is identifying which part of the network is
responsible for performance degradation.

Dealing with optimistic ACKs: Misbehaving TCP receivers
can ACK data packets before they are received, to manipulate the
sender into transmitting faster [28]. Dart is largely robust to such
optimistic ACKs, since it ignores any ACK packet that arrives before
the corresponding data packet. In fact, Dart can be easily extended
to detect and report optimistic ACKs. However, if an optimistic
ACK happens to reach Dart after the corresponding data packet
has already arrived at Dart (but not at the receiver), Dart (and any
other passive monitoring tool) would be misled into collecting an
incorrect RTT sample. We reason that it is difficult for the receiver
to reliably time optimistic ACKs in this way.

8 RELATED WORK

Passive RTT analysis: Previous work has proposed the idea of
passive RTT monitoring [18] using SYN/SEQ and ACK packets.
tcptrace [27] is a passive, open-source TCP traffic-analysis tool
that can measure RTT per SEQ/ACK packet pair within a given
packet trace. It runs in software on a general-purpose CPU. We
use this tool as our ground truth for evaluating Dart’s correctness
as tcptrace is free from time and memory constraints. That said,
unlike tcptrace, Dart can generate RTTs on live traffic in real time.
Also, while tcptrace rounds RTTs up to the nearest millisecond,
the Tofino enables Dart to report RTTs down to a nanosecond
granularity, which may be useful in extreme low-latency use cases.

Instead of matching data and ACK packets, the TCP time-stamp
option available in the TCP header can also be used for passive
RTT analysis. The pping tool [26] adopts this approach. However,
TCP timestamps are often too coarse-grained (e.g., 10 or 100 ms
granularity), and many services do not use them at all since the
TCP timestamp is an optional field [14]. Also, an end-host puts in

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

its timestamp clock as the field value, but different TCP implemen-
tations increment their internal clocks at different rates—some by
100 every second, and others by 1000 [8]. This makes computing
the absolute latency in milliseconds troublesome in a monitoring
device that does not know the end-host’s clock tick rate.

Passive RTT monitoring in the data plane: Dapper [16] is
an early work that aims to measure TCP performance in the data
plane. However, it can only track a single packet per congestion
window when doing RTT measurement; it has to wait until the
corresponding ACK arrives before starting to track another packet’s
RTT. In use cases where RTTs are large, or aggregate statistics (e.g.,
min., median, etc.) are being collected over time-windows, Dapper
would report too few samples per unit time to be useful. Chen et
al. [12] expanded Dapper’s idea and proposed an algorithm and
data structure that can track multiple SEQ packets simultaneously
in the data plane. However, this previous work does not correctly
deal with ambiguities in TCP, such as packet retransmission and
ordering. It also uses the memory space inefficiently and produces
RTT samples biased against long RTTs. We use this previous work
as our strawman in Section 2. Zheng et al. [32] proposed a novel
data structure called fridges to measure delay directly in the data
plane with the focus on collecting RTT samples without bias against
larger delays. This is done by applying a correction factor inversely
proportional to the probability of producing an RTT sample. This
previous work, however, does not address the accuracy and memory
efficiency issues caused by TCP ambiguities.

Liu et al. [23] proposed algorithms that run in the data plane for
four separate performance-monitoring tasks: round-trip latency,
packet loss detection, out-of-order detection, and retransmission
detection. This previous work focuses more on using memory sub-
linear in both the size of input data and the number of flows, and the
four performance-monitoring algorithms are independent of each
other. Also, the round-trip latency is not calculated in a per-packet
matching scheme; rather, it computes the average RTT by subtract-
ing the sum of all server-to-client (SEQ) packets’ timestamps from
the sum of all client-to-server (ACK) packets’ timestamps and then
computes the average, assuming no missing or duplicate SEQ or
ACK packets. RouteScout [4] measures packet loss and delay in
a programmable data plane to help select a better Internet path
driven by performance in real time. However, RouteScout measures
round-trip time only at TCP handshake using the first SYN and ACK
exchange. Thus, RouteScout only produces one RTT sample per
flow during connection establishiment. In contrast, Dart focuses on
accurate, continuous round-trip time monitoring on a per-packet
basis while taking into account the idiosyncrasies of TCP, including
packet loss, reordering, and retransmission.

9 CONCLUSION

Round-trip time (RTT) is a critical metric in network performance
monitoring, whether for tracking the QoE of latency-sensitive ap-
plications (e.g., in cloud gaming) or for detecting malicious attacks
(e.g., nation-state traffic interception attacks). Performing RT T mon-
itoring passively in real time in the data plane opens up new oppor-
tunities, especially because this allows the hardware switch to take
immediate action on packets based on RTT values. At the same time,
this means that RTTs should be computed with utmost accuracy

484

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford

even when faced with the idiosyncrasies of the TCP protocol. This
is particularly difficult due to the memory and packet processing
constraints in hardware switches. To this end, we present Dart,
a novel algorithm and data structure implemented in P4 that fits
and runs in a data plane with a Tofino1 or Tofino2 chipset. Even
when running in a data plane with strict constraints, Dart still
closely matches the accuracy of the widely used offline analysis
tools that run on servers with abundant memory. We open source
our implementation. We hope Dart will open up new opportunities
for building applications that can benefit from Dart’s ability to
compute accurate RTTs in real time directly in the data plane.

Acknowledgements: We thank our shepherd, Boon Thau Loo, and
the anonymous paper reviewers for their insightful feedback. We
thank the anonymous artifact reviewers for their feedback as well.
We thank Xiaoqi (Danny) Chen whose earlier work on Tofino-based
RTT monitoring inspired this work. We also thank Henry Birge-Lee
and Daniel Jubas for helping us set up the PEERING experiments.
We thank Princeton University’s Office of Information Technology,
Office of Institutional Research, and the Institutional Review Board
for enabling us to evaluate our work with anonymized campus
traffic. This work is supported by the NSF grant CNS-1704077 and
the DARPA grant HR0011-20-C-0107.

REFERENCES

[1] 2021. NVIDIA Mellanox NIC’s Performance Report with DPDK 21.05. http://fast.
dpdk.org/doc/perf/ DPDK_21_05_Mellanox_NIC_performance_report.pdf (2021).
Anurag Agrawal and Changhoon Kim. 2020. Intel Tofino2: A 12.9 Tbps P4-
Programmable Ethernet Switch. In IEEE Hot Chips Symposium (HCS). IEEE Com-
puter Society, 1-32.

Aditya Akella, Jeffrey Pang, Bruce Maggs, Srinivasan Seshan, and Anees Shaikh.
2004. A comparison of overlay routing and multihoming route control. ACM
SIGCOMM Computer Communication Review 34, 4 (2004), 93-106.

Maria Apostolaki, Ankit Singla, and Laurent Vanbever. 2021. Performance-Driven
Internet Path Selection. In ACM SIGCOMM Symposium on SDN Research (SOSR).
41-53.

Axel Arnbak and Sharon Goldberg. 2014. Loopholes for circumventing the
constitution: Unrestricted bulk surveillance on americans by collecting network
traffic abroad. Michigan Telecommunications and Technology Law Review 21
(2014), 317.

Debopam Bhattacherjee, Muhammad Tirmazi, and Ankit Singla. 2017. A cloud-
based content gathering network. In USENIX Workshop on Hot Topics in Cloud
Computing.

Henry Birge-Lee, Liang Wang, Jennifer Rexford, and Prateek Mittal. 2019. Sico:
Surgical interception attacks by manipulating BGP communities. In ACM SIGSAC
Conference on Computer and Communications Security. 431-448.

D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger. 2014. TCP Extensions
for High Performance. RFC 7323. RFC Editor.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review 44, 3 (2014), 87-95.
Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata Teix-
eira, and Nick Feamster. 2019. Inferring streaming video quality from encrypted
traffic: Practical models and deployment experience. In ACM SIGMETRICS. 1-25.
Kuan-Ta Chen, Yu-Chun Chang, Po-Han Tseng, Chun-Ying Huang, and Chin-
Laung Lei. 2011. Measuring the latency of cloud gaming systems. In Proceedings
of the 19th ACM international conference on Multimedia. 1269-1272.

Xiaoqi Chen, Hyojoon Kim, Javed M Aman, Willie Chang, Mack Lee, and Jen-
nifer Rexford. 2020. Measuring TCP round-trip time in the data plane. In ACM
SIGCOMM Workshop on Secure Programmable Network Infrastructure. 35-41.
Yunhua Deng, Yusen Li, Xueyan Tang, and Wentong Cai. 2016. Server alloca-
tion for multiplayer cloud gaming. In Proceedings of the 24th ACM international
conference on Multimedia. 918-927.

Hao Ding and Michael Rabinovich. 2015. TCP stretch acknowledgements and
timestamps: Findings and implications for passive RTT measurement. ACM
SIGCOMM Computer Communication Review 45, 3 (2015), 20-27.

Jon Dugan, Seth Elliott, Bruce A Mah, Jeff Poskanzer, and Kaustubh Prabhu. 2014.
iperf3, tool for active measurements of the maximum achievable bandwidth on

[2

(3]

[11

[12

[13]

(14]

[15]

http://fast.dpdk.org/doc/perf/DPDK_21_05_Mellanox_NIC_performance_report.pdf
http://fast.dpdk.org/doc/perf/DPDK_21_05_Mellanox_NIC_performance_report.pdf

Continuous In-Network Round-Trip Time Monitoring

IP networks. (2014). https://github.com/esnet/iperf.

Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dapper: Data
plane performance diagnosis of TCP. In ACM SIGCOMM Symposium on SDN
Research (SOSR). ACM, 61-74.

Nicholas Hopper, Eugene Y Vasserman, and Eric Chan-Tin. 2010. How much
anonymity does network latency leak? ACM Transactions on Information and
System Security (TISSEC) 13, 2 (2010), 1-28.

Hao Jiang and Constantinos Dovrolis. 2002. Passive estimation of TCP round-trip
times. ACM SIGCOMM Computer Communication Review 32, 3 (2002), 75-88.
Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas
Sekar, and Srinivasan Seshan. 2020. TEA: Enabling state-intensive network
functions on programmable switches. In ACM SIGCOMM. 90-106.

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.
The QUIC transport protocol: Design and internet-scale deployment. In ACM
SIGCOMM. 183-196.

Changhyun Lee, Chunjong Park, Keon Jang, Sue Moon, and Dongsu Han. 2015.
Accurate latency-based congestion feedback for datacenters. In USENIX Annual
Technical Conference (ATC). 403-415.

Sanghwan Lee, Zhi-Li Zhang, and Srihari Nelakuditi. 2004. Exploiting as hierarchy
for scalable route selection in multi-homed stub networks. In ACM Internet
Measurement Conference. 294-299.

Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braverman, and Jennifer
Rexford. 2020. Memory-efficient performance monitoring on programmable
switches with lean algorithms. In Symposium on Algorithmic Principles of Com-
puter Systems (APoCS). SIAM, 31-44.

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

[24] Giovane CM Moura, John Heidemann, Wes Hardaker, Pithayuth Charnsethikul,

Jeroen Bulten, Joao Ceron, and Cristian Hesselman. 2022. Old but Gold: Prospect-
ing TCP to Engineer and Real-time Monitor DNS Anycast. In Passive and Active
Measurement Conference.

RIPE NCC. 2021. RIPE Atlas. https://atlas.ripe.net/. (2021).

Kathleen Nichols. 2017. pping (Pollere passive ping). https://github.com/pollere/
pping. (2017).

Shawn Ostermann. 2007. tcptrace Homepage. http:// www.tcptrace.org/ (2007).
Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson. 1999. TCP
congestion control with a misbehaving receiver. ACM SIGCOMM Computer
Communication Review 29, 5 (1999), 71-78.

Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-Bassett. 2019.
PEERING: Virtualizing BGP at the Edge for Research. In ACM SIGCOMM In-
ternational Conference on Emerging Networking Experiments And Technologies.
51-67.

Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. 2021. Fine-Grained RTT
Monitoring Inside the Network. Measuring Network Quality for End-Users (2021).
Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford, Mung
Chiang, and Prateek Mittal. 2015. RAPTOR: Routing attacks on privacy in Tor.
In USENIX Security Symposium. 271-286.

Yufei Zheng, Xiaoqi Chen, Mark Braverman, and Jennifer Rexford. 2022. Unbiased
Delay Measurement in the Data Plane. In Symposium on Algorithmic Principles of
Computer Systems (APoCS). SIAM, 15-30.

https://github. com/esnet/iperf
https://atlas.ripe.net/
https://github.com/pollere/pping
https://github.com/pollere/pping
http://www.tcptrace.org/

	Abstract
	1 Introduction
	2 RTT Measurement Challenges
	2.1 Strawman for Measuring RTT
	2.2 Challenges with Correctness
	2.3 Challenges with Memory Efficiency

	3 Dart System Design
	3.1 Tracking Valid Measurement Ranges
	3.2 Lazy Eviction with a Second Chance
	3.3 Tracking Only Useful Samples

	4 Hardware Switch Prototype
	5 Dart in the Wild
	5.1 RTT Monitoring on Campus Traffic
	5.2 Interception Attack Detection

	6 Evaluation
	6.1 Dart Without Memory Constraints
	6.2 Impact of Table Configurations

	7 Discussion
	8 Related Work
	9 Conclusion
	References

