
Fine-Grained RTT Monitoring Inside the Network
Satadal Sengupta, Hyojoon Kim, Jennifer Rexford

Princeton University
{satadals,hyojoonk,jrex}@cs.princeton.edu

ABSTRACT
High-speed programmable switches (e.g., Intel Tofino) make
it possible for the network to monitor Quality of Experience
(QoE) and react quickly to improve performance. Round-trip
time (RTT) is a central metric that influences end-user’s QoE.
In this paper, we argue that an inline, real-time, and fine-
grained RTT measurement system—called P4RTT—can en-
able automatedQoEmonitoring and network adaptation (e.g.,
via changes in routing, scheduling, etc.) inside the network.
However, P4RTT is fraught with challenges; the vagaries
of the TCP protocol and the resource constraints in high-
speed switches make accurate RTT measurement difficult.
We discuss solution strategies to address these challenges
and present early results on an anonymized campus trace
collected using our P4Campus testbed. P4RTT, with very lim-
ited memory, is able to match the performance (collects 98%
of the RTT samples) of a baseline (a variant of tcptrace) that
has access to unlimited memory.

1 INTRODUCTION
The advent of commodity programmable switches (e.g., the
Intel Tofino [1]) and the P4 programming language [3] opens
up promising opportunities for in-network QoE monitoring
and network adaptation [14]. Round-trip time (RTT) is one of
the central components of end-user QoE. RTT relates directly
to TCP throughput and also heavily influences higher-level
metrics such as video QoE, page load time, and so on [2, 4].
Monitoring and minimizing RTTs is especially critical for
latency-sensitive applications like interactive video, multi-
player online gaming, and algorithmic trading in stock mar-
kets [16]. RTT monitoring in software is computationally
expensive and is therefore unsuitable for networks with high
traffic volume. Instead, an RTT monitoring system deployed
in the data plane of an on-path programmable switch can
trigger routing and scheduling changes automatically in re-
action to RTT anomalies (e.g., steady increase during video
streaming). Consider the following examples:

• Network congestion can cause an increase in video
startup delay and a decrease in video resolution; in-
creasing RTT is an indicator of such a change [4]. The
switch could dynamically reroute traffic to an alter-
nate, less congested path when video QoE starts to
decline;

• Anycast-based CDN replica selection could be done
dynamically by the switch based on evolving user QoE
CDN replicas are often selected using IP anycast to
allow for dynamic adaptation to the network condi-
tions. The switch could detect congestion enroute to a
selected CDN replica based on high RTTs, and reroute
to a replica with lower latency;

• In a WiFi network, the switch could trigger hand-offs
among in-range access points based on an end-user’s
QoE; the QoE here is estimated using RTTs between
access points and end-users.

Furthermore, in-network QoE adaptation obviates the need
to modify client and server end-points or applications.

Our vision is to design a system that can monitor on-path
RTTs in real time, detect a decline in a user’s QoE (e.g., by
identifying steadily increasing RTTs), and adapt the network
rapidly to improve QoE (e.g., by changing routing and sched-
uling policies). We are implementing this system—called
P4RTT—in the P4 language and deploying it on our campus
network P4Campus [9] to demonstrate feasibility. To be ef-
fective in practice, P4RTT needs certain properties:
(1) Passive measurement: Many popular measurement
tools use active probes such as ICMP pings to estimate the
RTT to remote hosts (e.g., iperf3 [7] and RIPE Atlas [10]).
SinceQoE depends on application-specific RTTs, probe-based
RTT estimates do not suffice. Instead, P4RTT should measure
RTTs passively by observing the actual user traffic [8].
(2) Continuousmeasurement:Many existing passive RTT
monitoring techniques estimate a flow’s RTT based only on
the TCP three-way handshake [6]. This approach is inaccu-
rate for long flows spanning minutes to hours (e.g., video
streaming) since RTTs can vary significantly during the life-
time of the connection. Also, handshake RTTs tend to be
smaller than the average RTT of the connection [6]. There-
fore, P4RTT must monitor RTTs continuously, beyond the
initial handshake.
(3) Accuratemeasurement:Continuous RTTmeasurement
involves matching data packets with their corresponding ac-
knowledgments (ACKs) [5]. However, the vagaries of the
TCP protocol—including retransmissions and reordering—
can make some RTT samples inaccurate. P4RTT should op-
erate correctly even under such conditions.
(4) Efficient operation:High-speed data planes impose sig-
nificant constraints on arithmetic operations, memory size,
the number of pipeline stages, and recirculation bandwidth.



Figure 1: Continuous RTTmeasurement at a monitor-
ing device by matching TCP data (SEQ) packets with
corresponding acknowledgement (ACK) packets.

Despite these constraints, P4RTT should scale to high traffic
rates, by collecting a representative RTT distribution even
under heavy load or adversarial traffic (e.g., SYN floods).

In the rest of this paper, we discuss our solution strategies
for P4RTT and highlight some encouraging initial results.
We conclude by discussing promising future directions.

2 CONTINUOUS RTT MONITORING
TCP carries a bi-directional data stream between two end-
hosts; bytes in one direction are acknowledged in the other by
appropriately setting sequence and acknowledgment num-
bers in the TCP header. A monitoring device placed strategi-
cally (§2.1) can leverage its location to continuously monitor
RTTs by matching data and ACK packets (§2.2).

2.1 Seeing Both Directions of the Traffic
Since P4RTT relies on matching data packets with corre-
sponding ACKs, it needs to be deployed to a device that can
“see” both sides of the traffic, i.e., sender (e.g., client inside
the campus) to receiver (e.g., web server on the Internet) and
vice-versa. As indicated in Fig. 1, we denote the direction of
the TCP data segment as the SEQ (sequence) direction, and
the direction of the acknowledgment segment as the ACK di-
rection. The RTT computed for a SEQ/ACK pair between the
monitoring device and the Internet constitutes the external
leg of the RTT, whereas that between the monitoring device
and the client within the campus constitutes the internal
leg. Fig. 2 illustrates the utility of such an arrangement; we
found that for the 90C� percentile RTT to YouTube from the
Princeton campus, the internal leg of the campus wireless
network contributes 57% (8/14 ms) of the total RTT whereas
the internal leg of the wired network contributes only 22%
(2/9 ms). This reveals that the campus wireless infrastructure
adds significant latency to YouTube traffic.
This setup can in principle be extended to include mul-

tiple monitoring devices along the path of the traffic, thus
providing the operator with the unique ability to divide the

Figure 2: Comparison between the share of internal
leg (in-campus) RTT vs. external leg (Internet-side)
RTT for YouTube in wired vs. wireless networks.

Figure 3: Strawman design: A hash table with flow ID +
expected ACK as key and timestamp as value. Arrival
of a data (SEQ) packet causes insertion into the hash ta-
ble, whereas arrival of an ACK triggers deletion of the
matching SEQ entry and collection of an RTT sample.

total client-server RTT into multiple fine-grained compo-
nents (e.g., WiFi user to access point, access point to wireless
controller, wireless controller to firewall, and so on). Such a
design allows the operator to identify the precise component
of the end-to-end path that is causing a particular drop in
user QoE, and address it accordingly.

2.2 Matching Data Packets with ACKs
Continuous RTT measurement requires storing some SEQ
packet state until a matching ACK packet arrives. We need
a data structure that stores this SEQ packet state as the key
and the packet timestamp as the corresponding value. When
a matching ACK packet arrives, we lookup the SEQ entry
using the key, and subtract the entry timestamp from the
ACK timestamp to compute the RTT sample. The key should
identify a packet uniquely, i.e., it should be composed of
a unique flow identifier (the 4-tuple of client and server
IP addresses and TCP port numbers) and a unique packet
identifier within the flow (the expected ACK number or
eACK). Thus an entry in the data structure looks like:

(?02:4C [{B�%� 3�%� B%>AC� 3%>AC� 4�� }] = C(�&
Fig. 3 illustrates this strawman design. The entry tagged
1 (white literal within a red circle) shows the insertion of
packet information into a hash table on the arrival of a SEQ

2




	Abstract
	1 Introduction
	2 Continuous RTT Monitoring
	2.1 Seeing Both Directions of the Traffic
	2.2 Matching Data Packets with ACKs

	3 P4RTT Design and Evaluation
	3.1 Handling Vagaries of TCP Protocol
	3.2 Working within Resource Constraints
	3.3 Early Results on Campus Trace

	4 Conclusion
	References

