Fine-Grained RTT Monitoring Inside the Network

Satadal Sengupta, Hyojoon Kim, Jennifer Rexford
Princeton University
{satadals,hyojoonk,jrex}@cs.princeton.edu

ABSTRACT

High-speed programmable switches (e.g., Intel Tofino) make
it possible for the network to monitor Quality of Experience
(QoE) and react quickly to improve performance. Round-trip
time (RTT) is a central metric that influences end-user’s QoE.
In this paper, we argue that an inline, real-time, and fine-
grained RTT measurement system—called P4RTT—can en-
able automated QoE monitoring and network adaptation (e.g.,
via changes in routing, scheduling, etc.) inside the network.
However, P4RTT is fraught with challenges; the vagaries
of the TCP protocol and the resource constraints in high-
speed switches make accurate RTT measurement difficult.
We discuss solution strategies to address these challenges
and present early results on an anonymized campus trace
collected using our P4Campus testbed. P4RTT, with very lim-
ited memory, is able to match the performance (collects 98%
of the RTT samples) of a baseline (a variant of tcptrace) that
has access to unlimited memory.

1 INTRODUCTION

The advent of commodity programmable switches (e.g., the
Intel Tofino [1]) and the P4 programming language [3] opens
up promising opportunities for in-network QoE monitoring
and network adaptation [14]. Round-trip time (RTT) is one of
the central components of end-user QoE. RTT relates directly
to TCP throughput and also heavily influences higher-level
metrics such as video QoE, page load time, and so on [2, 4].
Monitoring and minimizing RTTs is especially critical for
latency-sensitive applications like interactive video, multi-
player online gaming, and algorithmic trading in stock mar-
kets [16]. RTT monitoring in software is computationally
expensive and is therefore unsuitable for networks with high
traffic volume. Instead, an RTT monitoring system deployed
in the data plane of an on-path programmable switch can
trigger routing and scheduling changes automatically in re-
action to RTT anomalies (e.g., steady increase during video
streaming). Consider the following examples:

e Network congestion can cause an increase in video
startup delay and a decrease in video resolution; in-
creasing RTT is an indicator of such a change [4]. The
switch could dynamically reroute traffic to an alter-
nate, less congested path when video QoF starts to
decline;

e Anycast-based CDN replica selection could be done
dynamically by the switch based on evolving user QoE
CDN replicas are often selected using IP anycast to
allow for dynamic adaptation to the network condi-
tions. The switch could detect congestion enroute to a
selected CDN replica based on high RTTs, and reroute
to a replica with lower latency;

e In a WiFi network, the switch could trigger hand-offs
among in-range access points based on an end-user’s
QOE; the QOE here is estimated using RTTs between
access points and end-users.

Furthermore, in-network QoE adaptation obviates the need
to modify client and server end-points or applications.

Our vision is to design a system that can monitor on-path
RTTs in real time, detect a decline in a user’s QoE (e.g., by
identifying steadily increasing RTTs), and adapt the network
rapidly to improve QoE (e.g., by changing routing and sched-
uling policies). We are implementing this system—called
P4RTT—in the P4 language and deploying it on our campus
network P4Campus [9] to demonstrate feasibility. To be ef-
fective in practice, P4RTT needs certain properties:

(1) Passive measurement: Many popular measurement
tools use active probes such as ICMP pings to estimate the
RTT to remote hosts (e.g., iperf3 [7] and RIPE Atlas [10]).
Since QoE depends on application-specific RTTs, probe-based
RTT estimates do not suffice. Instead, P4RTT should measure
RTTs passively by observing the actual user traffic [8].

(2) Continuous measurement: Many existing passive RTT
monitoring techniques estimate a flow’s RTT based only on
the TCP three-way handshake [6]. This approach is inaccu-
rate for long flows spanning minutes to hours (e.g., video
streaming) since RTTs can vary significantly during the life-
time of the connection. Also, handshake RTTs tend to be
smaller than the average RTT of the connection [6]. There-
fore, PARTT must monitor RTTs continuously, beyond the
initial handshake.

(3) Accurate measurement: Continuous RTT measurement
involves matching data packets with their corresponding ac-
knowledgments (ACKs) [5]. However, the vagaries of the
TCP protocol—including retransmissions and reordering—
can make some RTT samples inaccurate. P4RTT should op-
erate correctly even under such conditions.

(4) Efficient operation: High-speed data planes impose sig-
nificant constraints on arithmetic operations, memory size,
the number of pipeline stages, and recirculation bandwidth.

Internet

Monitoring \ \
T g -4 - - T-—F-—q--rd-—=>
Device \ nh \ N W h
1 n/ 1 n "/t
| [N | 19 1 >
T 1 T I I 1 1
Q —o! —> !
Campus Ex(e;]rz.rl Legll-nlernal External Leg Internal
eg RTT RTT Leg RTT

Figure 1: Continuous RTT measurement at a monitor-
ing device by matching TCP data (SEQ) packets with
corresponding acknowledgement (ACK) packets.

Despite these constraints, P4RTT should scale to high traffic
rates, by collecting a representative RTT distribution even
under heavy load or adversarial traffic (e.g., SYN floods).

In the rest of this paper, we discuss our solution strategies
for P4RTT and highlight some encouraging initial results.
We conclude by discussing promising future directions.

2 CONTINUOUS RTT MONITORING

TCP carries a bi-directional data stream between two end-
hosts; bytes in one direction are acknowledged in the other by
appropriately setting sequence and acknowledgment num-
bers in the TCP header. A monitoring device placed strategi-
cally (§2.1) can leverage its location to continuously monitor
RTTs by matching data and ACK packets (§2.2).

2.1 Seeing Both Directions of the Traffic

Since P4RTT relies on matching data packets with corre-
sponding ACKs, it needs to be deployed to a device that can
“see” both sides of the traffic, i.e., sender (e.g., client inside
the campus) to receiver (e.g., web server on the Internet) and
vice-versa. As indicated in Fig. 1, we denote the direction of
the TCP data segment as the SEQ (sequence) direction, and
the direction of the acknowledgment segment as the ACK di-
rection. The RTT computed for a SEQ/ACK pair between the
monitoring device and the Internet constitutes the external
leg of the RTT, whereas that between the monitoring device
and the client within the campus constitutes the internal
leg. Fig. 2 illustrates the utility of such an arrangement; we
found that for the 90" percentile RTT to YouTube from the
Princeton campus, the internal leg of the campus wireless
network contributes 57% (8/14 ms) of the total RTT whereas
the internal leg of the wired network contributes only 22%
(2/9 ms). This reveals that the campus wireless infrastructure
adds significant latency to YouTube traffic.

This setup can in principle be extended to include mul-
tiple monitoring devices along the path of the traffic, thus
providing the operator with the unique ability to divide the

RTT to YouTube

Wired
Wireless

o 5 10 15

90%ile RTT (ms)

B In-campus RTT W Internel-side RTT

Figure 2: Comparison between the share of internal
leg (in-campus) RTT vs. external leg (Internet-side)
RTT for YouTube in wired vs. wireless networks.

® 250 P d o (FlowlD, expectedACK)

Table _
{IP,p, > IP,P }, 1001 t=250

{IP,P, = IP,P }, 1050 t=50 @
® 350 Match and

Delete
T — ©
m/ {IP,P, — PP} 1140 t=200

Figure 3: Strawman design: A hash table with flow ID +
expected ACK as key and timestamp as value. Arrival
of a data (SEQ) packet causes insertion into the hash ta-
ble, whereas arrival of an ACK triggers deletion of the
matching SEQ entry and collection of an RTT sample.

total client-server RTT into multiple fine-grained compo-
nents (e.g., WiFi user to access point, access point to wireless
controller, wireless controller to firewall, and so on). Such a
design allows the operator to identify the precise component
of the end-to-end path that is causing a particular drop in
user QoE, and address it accordingly.

2.2 Matching Data Packets with ACKs

Continuous RTT measurement requires storing some SEQ
packet state until a matching ACK packet arrives. We need
a data structure that stores this SEQ packet state as the key
and the packet timestamp as the corresponding value. When
a matching ACK packet arrives, we lookup the SEQ entry
using the key, and subtract the entry timestamp from the
ACK timestamp to compute the RTT sample. The key should
identify a packet uniquely, i.e., it should be composed of
a unique flow identifier (the 4-tuple of client and server
IP addresses and TCP port numbers) and a unique packet
identifier within the flow (the expected ACK number or
eACK). Thus an entry in the data structure looks like:

Spacket [{sIP, dIP, sPort,dPort, eACK}] = tspo

Fig. 3 illustrates this strawman design. The entry tagged
1 (white literal within a red circle) shows the insertion of
packet information into a hash table on the arrival of a SEQ

No. of Active Connections over Time

] T N
AN)]

50000 60000

50000

40000

40000
30000

30000

No. of Packets

20000 -
— Active Connections 20000

-~ Mean Active Connections = 34698
-~ Median Active Connections = 34372
--- 90%ile Active Connections = 41734
--- 99%ile Active Connections = 46885

No. of Active Connections

10000 10000

0 200 400 600 800 0 200
Time (seconds)

Figure 4: ~49K active connections
seen in a second in the campus
trace during peak traffic.

packet. Such entries stay on in the hash table until a match-
ing ACK packet is seen; a matching ACK packet has the same
flow ID as an existing entry (upon reversal of source and des-
tination fields) and the exact ACK number indicated by the
eACK of that entry. The entry tagged 2 shows this phenome-
non; a matching ACK packet causes the entry to be deleted,
and the corresponding RTT sample is reported. Note that the
RTT (50 ms here) is computed as the difference between the
timestamp of the ACK packet (350) and the timestamp of the
SEQ entry (300). This arrangement is straightforward and
works well when TCP behavior is favorable [5]. However, as
we discuss in the next section, certain vagaries of the TCP
protocol pose serious challenges to P4RTT.

Some methods measure RTTs by using the TCP timestamp
option available in the TCP header, instead of matching data
and ACK packets (e.g., pping [11]); however, since times-
tamps can only be set by end-points, an in-network device
would suffer from time synchronization issues. Furthermore,
TCP timestamps are often too coarse-grained (e.g., 10 or 100
ms granularity), and many services do not use them at all
since they are optional [6].

It is worth mentioning here that the QUIC protocol which
is replacing a lot of TCP traffic on the Internet encrypts the
header information that allows us to match data packets
with ACKs in the aforementioned way [15]. However, QUIC
implements packet numbers and a spin bit, which make it
possible to implement a similar technique. The exact specifics
of such a technique is part of our future work.

3 P4RTT DESIGN AND EVALUATION

The strawman (§2) is vulnerable to inaccuracies (§3.1) and
can also be memory inefficient (§3.2). The following discus-
sion illustrates this, and proposes mitigating strategies.

3.1 Handling Vagaries of TCP Protocol

When TCP retransmits lost packets, the monitoring device
sees two copies of the same data packet and fails to conclu-
sively match one of these with an ACK packet (a condition

External Leg: Active Packets over Time

— Al Active
RTT Active
—-- Evicted Active

400

Time (seconds)

Figure 5: ~60K active (unmatched)
packets seen in the campus trace
during peak traffic.

0.8

0.6

CDF

0.4

0.2

—— teptrace_const (6832222 samples)
0.0 4 -=- partt (6728128 samples)

600 800 1072 10° 10% 104
Time (ms)

Figure 6: P4RTT collects 98% of sam-
ples collected by tcptrace_const; CDFs
are almost identical.

known as the TCP retransmission ambiguity). Sometimes
packets get reordered enroute to the destination, causing the
ACK for a late-arriving reordered packet to mistakenly get
matched with an in-order data packet (a condition known as
the TCP reordering ambiguity). Although it is impossible to
correct for such inaccuracies to produce valid RTT samples,
we can at least detect the occurrence of these ambiguities
if we maintain some flow-state. Our idea is to maintain a
window of unambiguous bytes (specifically, the starting byte
number and the ending byte number) for which it is safe to
collect RTT samples—we call this byte-range the measure-
ment range. PARTT is therefore designed as a cascade of two
data structures, instead of just one in the strawman:

e The flow table stores the flow state, with the 4-tuple
as the key and the measurement range as the value;

o The subsequent packet table stores packet state just as
in the strawman solution.

RTT samples are collected only for packets determined as
unambiguous by the flow table. Previous work that mea-
sures RTT passively by matching data and ACK packets (e.g.,
teptrace [12]), has indeed observed and corrected for the
aforementioned ambiguities, by keeping a large amount of
per-flow state. In contrast, P4RTT is able to deal with the
same ambiguities using only constant per-flow state, which
makes it well-suited for the resource-constrained high-speed
data planes (discussed next).

3.2 Working within Resource Constraints

High-speed data planes have severe resource constraints.
Packets are processed in a streaming fashion, and there are
only a limited number of computational stages (e.g., 10-20);
although recirculations are allowed, doing so for more than
5-10% of packets starts to incur a heavy performance hit.
Register memory that could be allocated for storage of flow
and packet tables is also limited (~50K fixed-size records).
Under these constraints, malicious behavior such as SYN
flood attacks or port scans can easily overwhelm our data

structures. Even legitimate user traffic during peak usage
hours could subject P4RTT to enormous memory pressure.
Furthermore, TCP often ACKs multiple data packets cumu-
latively, i.e., only one out of two or more packets get ACKed;
some packet records that never receive ACKs keep occupy-
ing scarce memory as a result. Idle flows and really long
RTTs do not help either. P4RTT is able to overcome these
constraints through several design choices:

e Our data structures span multiple stages of the hard-
ware pipeline to allow for multiple insertion opportu-
nities to increase occupancy;

We adopt an insertion policy called cuckoo hashing [13]
that forces old packet records to recirculate upon mem-
ory contention—every old packet that is now stale (i.e.,
its flow measurement range is ahead of its eACK) is

evicted, thus making space for new entries;

e P4RTT does not store information about SYN and SYN-
ACK packets since it does not rely on handshake RTTs.
This helps thwart SYN floods and port scans. This
prevents SYN floods and port scans from exhausting
switch resources, thus allowing for the collection of
more measurement data.

Furthermore, during peak traffic when P4RTT cannot possi-
bly collect all potential RTT samples, we ensure that P4RTT
collects unbiased samples, i.e., the distribution of sampled
RTTs matches the distribution of actual RTTs closely, so that
QoF estimates are not distorted.

3.3 Early Results on Campus Trace

We collected a 15-minute long trace from the Princeton cam-
pus using our P4Campus testbed in early April, 2020'. Fig. 4
shows the number of active connections per-second over
the duration of the trace. The number of active (unmatched)
packets per-second is shown in blue in Fig. 5; the number of
packets that finally contribute to RTT samples is shown in
orange, while the number of packets that do not is shown
in green. The 99"" percentile number of active connections
is ~#49K, while the same for active packets is *60K; these
statistics provide an indication of the peak load on P4RTT’s
flow table and packet table, respectively.

We simulated P4RTT in Python to resemble a Tofino-based
implementation faithfully and parameterized the total sizes
of data structures and the number of stages (for multi-stage
data structures). We compared its performance, for various
parameter sets, against tcptrace_const, a constant-space (O(1)
per record) Python version of tcptrace [12] that we imple-
mented as a baseline. Fig. 6 shows that even when parame-
terized with a flow table of size 1024 and a packet table of

IThe trace was anonymized and the study is approved by the Institutional
Review Board (IRB) and the Institutional Review Panel for the use of Ad-
ministrative Data in Research (PADR) at Princeton.

size 4096 (with 4 stages allocated to each table), which are
mere fractions of the peak flow and packet loads respectively,
P4RTT is able to collect 98% of the samples that tcptrace_const
can collect with unlimited memory. The RTT distributions
are roughly identical as well, as can be observed from Fig. 6.

4 CONCLUSION

The potential benefits of an in-network QoE monitoring and
network adaptation system are undeniable. However, build-
ing such a system is rife with difficult challenges, both due
to the vagaries of TCP traffic and the severe resource con-
straints of high-speed programmable switches. In this paper,
we posit that it is indeed possible to design and implement
such a system—which we call P4RTT. We present early results
that show promise in its role as a continuous, fine-grained
RTT monitoring system. Our future work involves expand-
ing the scope of P4RTT to network adaptation in reaction to
RTT anomalies, and deploying it to our P4Campus testbed
to fully realize our vision. Our future work also includes
expanding the scope of P4RTT to the increasingly popular
QUIC protocol.

REFERENCES

[1] Anurag Agrawal and Changhoon Kim. 2020. Intel Tofino2: A 12.9
Tbps P4-Programmable Ethernet Switch. In IEEE Hot Chips Symposium
(HCS). IEEE Computer Society, 1-32.

[2] Debopam Bhattacherjee, Muhammad Tirmazi, and Ankit Singla. 2017.

A cloud-based content gathering network. In USENIX Workshop on

Hot Topics in Cloud Computing.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, and David Walker. 2014. P4: Programming protocol-

independent packet processors. ACM SIGCOMM Computer Communi-

cation Review 44, 3 (2014), 87-95.

Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins,

Renata Teixeira, and Nick Feamster. 2019. Inferring streaming video

quality from encrypted traffic: Practical models and deployment expe-

rience. In ACM SIGMETRICS. 1-25.

Xiaoqi Chen, Hyojoon Kim, Javed M Aman, Willie Chang, Mack Lee,

and Jennifer Rexford. 2020. Measuring TCP round-trip time in the data

plane. In ACM SIGCOMM Workshop on Secure Programmable Network

Infrastructure. 35-41.

Hao Ding and Michael Rabinovich. 2015. TCP stretch acknowledge-

ments and timestamps: Findings and implications for passive RTT

measurement. ACM SIGCOMM Computer Communication Review 45,

3 (2015), 20-27.

[7] Jon Dugan, Seth Elliott, Bruce A Mah, Jeff Poskanzer, and Kaustubh
Prabhu. 2014. iperf3, tool for active measurements of the maxi-
mum achievable bandwidth on IP networks. URL: https://github.
com/esnet/iperf (2014).

[8] Hao Jiang and Constantinos Dovrolis. 2002. Passive estimation of TCP
round-trip times. ACM SIGCOMM Computer Communication Review
32,3 (2002), 75-88.

[9] Hyojoon Kim, Xiaoqi Chen, Jack Brassil, and Jennifer Rexford. 2021.
Experience-driven research on programmable networks. ACM SIG-
COMM Computer Communication Review 51, 1 (2021), 10-17.

[10] RIPE NCC. 2010. RIPE Atlas. https://atlas.ripe.net/. (2010).

3

—

[4

—

(5

—

(6

—

https://atlas.ripe.net/

Kathleen Nichols. 2017. pping (pollere passive ping). https://github.
com/pollere/pping. (2017).

Shawn Ostermann. 2007. tcptrace Homepage. http:// www.tcptrace.org/
(2007).

Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing.
Journal of Algorithms 51, 2 (2004), 122-144.

Larry Peterson, Tom Anderson, Sachin Katti, Nick McKeown, Guru
Parulkar, Jennifer Rexford, Mahadev Satyanarayanan, Oguz Sunay, and

Amin Vahdat. 2019. Democratizing the network edge. ACM SIGCOMM
Computer Communication Review 49, 2 (2019), 31-36.

[15] B. Trammell and M. Kuehlewind. 2018. The QUIC Latency Spin
Bit. Technical Report. https://datatracker.ietf.org/doc/html/
draft-ietf-quic- spin-exp.

[16] Philip Treleaven, Michal Galas, and Vidhi Lalchand. 2013. Algorithmic
trading review. Commun. ACM 56, 11 (2013), 76-85.

https://github.com/pollere/pping
https://github.com/pollere/pping
http://www.tcptrace.org/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-spin-exp
https://datatracker.ietf.org/doc/html/draft-ietf-quic-spin-exp

	Abstract
	1 Introduction
	2 Continuous RTT Monitoring
	2.1 Seeing Both Directions of the Traffic
	2.2 Matching Data Packets with ACKs

	3 P4RTT Design and Evaluation
	3.1 Handling Vagaries of TCP Protocol
	3.2 Working within Resource Constraints
	3.3 Early Results on Campus Trace

	4 Conclusion
	References

