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ABSTRACT
Side-channel attacks, which exploit deficiencies in the imple-
mentations of theoretically secure systems, have been known
to take a variety of forms on the mobile platforms. In this
work, we present Magneto, a magnetic field based app clas-
sification mechanism. Magneto captures the Hall effect due
to energy consumption by different components in a smart-
phone, and fingerprints apps based on data captured with
a Hall sensor, and a phone magnetometer. We demonstrate
that our mechanism can identify magnetic field changes due
to varying levels of energy consumption. We further show
that Magento can not only classify between apps in the same
scenario, but also can tell apart scenarios when the phone
is being charged (with an AC adapter, wireless charger, or
powerbank) or not. We perform validation experiments with
5 different apps, and achieve ∼ 85% accuracy with 3 Android
apps, subject to 3 different charging scenarios.
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1 INTRODUCTION
The proliferation of smartphones in day-to-day usage has
engendered fresh challenges in the domains of user security
and privacy. Extensive use of mobile devices has led to the
addition of a newer dimension to the already challenging
area concerning side-channel attacks. Side-channel attacks
are characerized with gleaning out sensitive data via indirect
means, i.e., by exploiting signatures that manifest from im-
plementation specifics of an otherwise secure system. Recent
studies have shown that a myriad of passive yet fine-grained
side-channel attacks are possible on mobile platforms, due
to both the ubiquity of devices, as well as the variety of
sources through which the devices emit data [1]. For exam-
ple, analysis of power consumption data has been shown to
reveal clues regarding the application usage behaviour of
smartphone users [4].

Non-intrusive fingerprinting of mobile application usage
throws open opportunities for a variety of use-cases, from the
perspectives of both security and monitoring. While knowl-
edge of app usage can aid and abet privacy breaches and
associated security attacks (e.g., if an attacker knows which
app is running, he can launch a targetted attack), it can also
enable policy enforcers, such as enterprise administrators,
to monitor the productivity of employees (measuring time
spent on productive apps like email, vs. entertainment apps).
In this abstract, we propose Magneto1, a magnetic field

(MF) based mechanism for app usage fingerprinting. Mag-
neto works by identifying the changes in MF in the vicinity
of a smartphone, caused due to power consumption during
the execution of an app. We capture the MF strength around
a device using 2 types of sensors, i.e., (1) a Hall sensor, and
(2) the magnetometer sensor present in smartphones. We hy-
pothesize and validate (using 5Android apps from 5 different
categories) that the power consumption due to different com-
ponents of a smartphone (e.g., background CPU, foreground

1Magneto is an American comic-book character, who possesses the ability
to leverage magnetic fields around himself to his advantage.
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Figure 1: Experimental in-laboratory setup: The Hall sen-
sor connected to an Arduino board collects Hall effect val-
ues, while a Moto X2 phone collects magnetometer values
from the target smartphone.

CPU, screen, etc.) manifest in the overall energy consump-
tion of an app, which in turn leaves footprints on the MF
around the device. Furthermore, we derive features from the
collected data, and perform classification using a machine
learning based model. We show that not only are we able to
differentiate among appss based on their energy footprints,
we are also able to segregate scenarios based on whether
the phone is being charged (with AC adapter, powerbank, or
wireless charger) or not. Our mechanism is able to achieve
∼ 85% classification accuracy overall, while using 3 repre-
sentative smartphone apps, and 3 phone charging scenarios.

Having demonstrated the efficacy of Magneto in identify-
ing smartphone apps from MF data, we identify 2 immediate
directions along which the mechanism can be improved: (1)
Identifying apps when multiple apps are executed together,
and (2) Handling effects of external factors (i.e., temperature)
on the behaviour of sensors. We discuss proposed resolutions
as part of future work.

2 EXPERIMENTAL SETUP
We describe the experimental setup in this section.

Hall effect: The Hall effect, due to Edwin Hall in 1879, is
a phenomenon by which a potential difference is produced
across an electrical conductor, when a MF is applied perpen-
dicular to the flow of current inside it [3]. We observed the
creation of a Hall voltage in the vicinity of a smartphone,
when an app is executed on it.

Sensors:We measured the Hall effect voltage using a Hall
effect sensor (ACS712).We also used the magnetometer sen-
sor available in commodity smartphones, which measures
direction and strength of MF at a particular location.

Microcontroller: We use an Arduino board for recording
data from the Hall effect sensor. The target is a Motorola

Moto X 2nd generation Android smartphone. The complete
setup is shown in Fig. 1.

Apps considered: Existing studies show that different com-
ponents in a phone exhibit different energy consumption
behaviour. Based on the observations in [2], we consider the
following components: (1) Foreground sceen, (2) Foreground
CPU, (3) Foreground Network, (4) Background CPU, (5) Back-
ground Network. We consider one Android app each from
the following categories, therefore, as follows:

(1) Foreground Screen – Image Gallery
(2) Foreground CPU + (1) – MX Video Player (offline video)
(3) Foreground Network + (2) – Youtube
(4) Background CPU – Google Play Music (offline audio playback)
(5) Background Network + (4) – Google Play Store (app download)

Apps (1), (2), (3), which are foreground apps, should ideally
exhibit energy consumption in an increasing order, as should
background apps (4) & (5), respectively.

Automated data collection: We use the Google developer
provided Android app testing and automation tool Mon-
keyrunner for automating data collection from the aforemen-
tioned apps for long durations.

3 EVALUATION
We present our preliminary results in this section.

Validation of component-wise power consumption:We
report the measured MF results for the 5 Android apps men-
tioned in the previous section, in Fig. 2. We observe that for
the foreground apps, Image Gallery and MX Video show sim-
ilar MF signatures. However, Youtube shows much higher
values. For the background apps, similarly, the MF values are
consistently higher as we move from Google Play Music to
Google Play Store. This indicates that power consumption is
indeed reflected in the MF patterns captured by our sensors.

Charging scenarios:Next, we take a look at the differences
in MF values obtained, when subjected to different charging
scenarios, i.e., (1) No charging, (2) AC adapter, (3) Wireless
charger, and (4) Powerbank. For this experiment, we con-
sider only the Youtube app. The observations are shown in
Fig. 3. We find that the MF signatures are distinct for all the
4 charging scenarios considered.

Charging scenario and app combinations: We extend
our experiments to analyzing the MF values obtained for dif-
ferent charging scenario and app combinations. We consider
the (1) No charging, (2) AC adapter, and (3) Powerbank charg-
ing scenarios, and the (1) FacebookMessenger, (2)WhatsApp,
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Figure 2: CDF of MF values for 5
apps to validate energy consumption
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Figure 3: CDF of MF values for dif-
ferent charging scenarios
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Figure 4:CDF ofMF values for charg-
ing scenario and app combinations

and (3) Youtube apps. The CDFs for the different combina-
tions are presented in Fig. 4. We observe once again that
the MF signatures are different for the different cases. As
an example, we see that WhatsApp shows the highest MF
values consistently (and therefore highest energy consump-
tion); however, we can still distinctly identify which charging
scenario WhatsApp is being executed in.

Table 1: Results for 3 charging scenarios & 3 apps

Classifier F1-Score Accuracy (%)
SVM 0.86 85.38

Random Forest 0.86 85.79
Random Tree 0.85 85.30

Classification results: The classification results for 3 charg-
ing scenarios, and 3 Android applications are presented in
Table 1. We consider 3 different classifiers for this experi-
ment, i.e., (1) SVM, (2) Random Forest, and (3) Random Tree.
We obtain ∼ 0.86 F1-Score, and ∼ 85% accuracy on average,
in classifying charging scenario-app combinations. These
results indicate the efficacy of our proposed mechanismMag-
neto, in discriminating among MF signatures, under varying
app and charging conditions.

4 CONCLUSION AND FUTUREWORK
In this work, we presented a MF based mechanism Magneto,
which learns magnetic signatures from mobile app usage,
and leverages such learning to classify different Android
apps under various charging scenarios, with ∼ 85% accuracy.
We also show that MF values are representative of power
consumption by different smartphone components.

Future directions: In this abstract, we presented prelimi-
nary results for our mechanismMagneto. However, a number
of perspectives remain unaddressed, which we discuss here.

Effect of external factors on Hall sensor and magne-
tometer: During our experiments, we observed that the read-
ing from our sensors are heavily dependent on the environ-
ment we subject those to. For example, temperature plays an
important role – the higher the room temperature, higher is
the range of values. In fact, we observed that factors such as
how many ACs are on in the room where the experiment is
being conducted, or what temperature they are set at, have
bearing on the MF signatures of applications. We also ob-
served that the number of humans, their mobility, and the
arrangement of furniture in the room also affect the MF read-
ings from our sensors. We plan to resolve these issues by
carefully observing the ranges for each factor, and then cate-
gorizing those into distinct environments. We can then train
use a Multitask Learning framework to address the variety
in training conditions.

Effect of running multiple apps: We also need to ad-
dress the effects of executing multiple apps on the same
smartphone. We expect to receive superimposed signatures,
which may be hard to dissect, and would therefore require
detailed analysis.

Experiments in the wild: In this abstract, we presented
observations from experiments in laboratory conditions. How-
ever, the observations may vary widely when subjected to
in-the-wild testing. We plan to deploy a small sensor box in
different areas of the university, to study such effects.
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