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Abstract—A large fraction of video content providers have
adopted adaptive bitrate streaming over HTTP. The client player
typically runs an adaptive bitrate (ABR) algorithm to decide
upon the most optimal quality for the next few seconds of video
playback. State-of-the-art ABR algorithms attempt to achieve an
optimal trade-off among the competing objectives of high bitrate,
less rebuffering, and high smoothness, in the face of unpredictable
bandwidth variability. However, optimal bandwidth utilization
does not necessarily ensure high quality of experience (QoE).
Different users have different content preferences even within
the same video, due to differences in team loyalties (in sport),
character preferences (in movies and soaps), and so on. In this
work, we present HotDASH, a system which enables opportune
prefetching of user-preferred temporal video segments (called
hotspots). HotDASH is powered by an optimal prefetch and
bitrate decision engine, and is implemented using a prefetch
module in the open source DASH player dash.js. The decision
engine is designed as a cascaded reinforcement learning (RL)
model, implemented using the state-of-the-art actor-critic RL
algorithm A3C over a neural network. We train the neural
network using trace-driven simulations over a large variety
of bandwidth conditions. HotDASH outperforms all baseline
algorithms, with a 16.2% QoE improvement over the best-
performing baseline, and achieves 14.31% better average bitrate
due to its ability to prefetch opportunistically.

Index Terms—hotspot aware video streaming, deep reinforce-
ment learning

I. INTRODUCTION

Traffic from HTTP-based video streaming applications ac-

counts for the largest share of the global Internet traffic

in recent years [1]. Simultaneously, the user demand for

video content with high Quality of Experience (QoE) has

grown rapidly. The inability to provide satisfactory QoE to

users translates into heavy losses for the service providers.

However, complications arise from the fact that different users

experience the same video differently. Numerous studies have

shown that the quality of video experience for a user may

depend on a variety of different factors, including gender, age,

community, content, and so on [2]–[5]. Naturally, there arises

a need for personalized video experience.

Video service providers primarily use Dynamic Adaptive
Streaming over HTTP (DASH), to serve content to their

subscribers. The target video is typically broken into chunks
of fixed playing time, with each chunk stored at different

qualities1. The client-side video player attempts to estimate the

available bandwidth, based on the current playing conditions

(in terms of throughput, buffer state, and so on) and employs

adaptive bitrate (ABR) algorithms to choose an optimal quality

for the next chunk. However, problems arise when the estima-

tion is inaccurate; if a high-quality chunk is requested by the

client in the face of insufficient bandwidth, the playback stalls

for a few seconds (until the chunk is downloaded completely),

a phenomenon known as rebuffering. Besides rebuffering,

abrupt changes in the quality of consecutive chunks also

hinder QoE; streaming algorithms, therefore, try to diminish

the extent of abrupt changes, and thereby increase playback

smoothness. Obviously, the primary requirement still remains

to stream the video at the highest quality possible. State-

of-the-art ABR algorithms, e.g. MPC [6] and Pensieve [7],

therefore optimize for an objective function (or reward), which

comprises three competing components: (1) high bitrate, (2)

less rebuffering, and (3) high smoothness. The result is a

session of video playback, where some temporal segments

(chunks) are streamed at a higher quality than others, with

the variation in quality closely following that of the available

bandwidth.
While the aforementioned scenario is the most optimal in

terms of bandwidth usage, to an unsuspecting user, the quality

variability may seem random, and less than satisfactory. For

example, let us consider a graduate student Bob, who is

also an avid sports fan, and supports the team Panthers.

Unfortunately, he misses out on watching the tournament

final between Panthers and Eagles (another team), due to an

impending deadline. Finally getting an opportunity, he arrives

at the nearest café, connects his smartphone to the WiFi

network, and starts watching the much anticipated highlights.

The WiFi connection being unreliable, he ends up with a

video experience where the quality is lower during scoring

opportunities of Panthers, even though the streaming algorithm

did its best in utilizing the available WiFi bandwidth.
The requirement, therefore, is for a video streaming strategy

which takes into account content preferences of users, in

addition to optimal use of bandwidth. More specifically, the

streaming algorithm must be aware of high-priority temporal

1The terms quality, bitrate, and resolution are often synonymously used in
this context, even though they are technically different (albeit related). In this
paper, we use these terms synonymously, unless otherwise specified.
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segments in the video – which we call hotspots in this paper

– and optimize video delivery accordingly. Existing works

in the literature [8]–[10] have focused on identifying and

extracting important video segments based on user person-

alization. However, merely forcing the player to download

hotspots in higher quality does not suffice; the rebuffering

time can increase significantly if high quality chunks are

downloaded in the face of declining bandwidth (§V). Only

a streaming algorithm, which makes opportune use of higher

bandwidth, and a buffer with sufficient content waiting to play,

will be able to serve hotspots at a satisfactory quality, without

disregarding the competing objectives of low rebuffering time

and high smoothness. Note that this requirement is different

from foveated rendering [11], where spatially important parts

of a video (more specifically, images combining to form a

video) are rendered in a higher resolution.
In this paper, we propose HotDASH (abbreviation for

hotspot-aware DASH), a system which delivers video con-

tent in a hotspot-aware manner. HotDASH circumnavigates

around the requirement of forceful high-quality downloads, by

implementing opportune prefetching of hotspot video chunks.

Prefetching refers to the out-of-order download of a particular

video chunk. Prefetching is opportune when the bandwidth

is sufficiently high to download a high bitrate version of

the chunk, and the buffer has sufficient content to not get

completely depleted (thus causing rebuffering) during the

additional delay caused due to prefetching. Additionally, it is

important to prefetch in a manner such that other (regular/non-

hotspot) video chunks are still downloaded at satisfactory bi-

trates, and playback smoothness does not diminish excessively.

In a nutshell, opportune prefetching is ideally equivalent to a

reordering of optimal bitrates (as yielded by state-of-the-art

ABR algorithms) among hotspot chunks and regular chunks,

such that the hotspot chunks end up with the higher bitrates,

without causing rebuffering or lack of smoothness (as far as

possible). Since state-of-the-art bitrate adaptation algorithms

treat every video chunk with equal importance, they lack the

ability to prioritize download of certain chunks over others.

Even if prefetching is enabled, these algorithms would be

unable to optimally decide when to prefetch, such that the

aforementioned objectives are addressed.
We address three important challenges through HotDASH:

1) On-demand prefetch in DASH: We solve the technical

challenge of enabling a DASH client to request out-of-

order hotspot chunks, by implementing a custom prefetch

module in the open source DASH player dash.js [12].

2) Identifying hotspot prefetch opportunities: We address

the research challenge of intelligently detecting opportune

moments for hotspot chunk downloads, by implementing

a cascaded neural network model which learns through

experience (i.e., performs reinforcement learning (RL)).
HotDASH ensures highest possible quality for hotspot

chunks under current bandwidth conditions.

3) Achieving a balance between the hotspot quality and
other QoE objectives: The RL model further ensures that

prefetching hotspot chunks does not lead to rebuffering,

or inordinate decline in quality of regular chunks and in

playback smoothness, as far as possible.

The prefetch decision engine, which is at the core of Hot-

DASH, does away with the requirement of pre-programmed

control rules, or carefully supervised strategies, which seldom

generalize well. Instead, during the training phase, it starts

with zero assumptions regarding the operating environment

of the video player. As it takes decisions regarding when

(if at all) to prefetch hotspot chunks, and at what quality,

it receives a reward for every such decision. The reward is

same as the objective function mentioned before (optimizing

for high bitrate, less rebuffering, and high smoothness), with

the adjustment that high bitrate decisions for hotspot chunks

are awarded more than those for regular chunks (§III-D1).

The obtained reward reinforces the model to make decisions

which maximize the cumulative reward, thus ensuring user

satisfaction without compromising on bandwidth utilization.

While using deep reinforcement learning (RL) for video

streaming has been proposed before by Pensieve [7], our

novelty lies in the unique cascaded RL model, whereby we

leverage Pensieve’s model for bitrate decisions, and train our

own neural network for prefetching decisions (§II).

The HotDASH decision engine is trained using A3C, which

is a state-of-the-art actor-critic RL algorithm [13]. We perform

training over a large corpus of bandwidth traces, available

online. The training is hastened with the use of a trace-

driven simulation environment, which faithfully models live

video playback sessions. Once trained, the model is put up

as a service, running on a separate server. The DASH client

periodically sends the playback state (in terms of throughput,

buffer, sizes of upcoming regular and hotspot chunks, etc.) to

this service, and receives a prefetch decision, as well as the

optimal bitrate for the next chunk. We evaluate HotDASH by

comparing against 6 state-of-the-art ABR algorithms, under

a wide variety of network traces. HotDASH outperforms all

the baseline algorithms, achieving an average improvement

in QoE of 16.2% over the best performing baseline, Buffer

Based [14]. It also outperforms Pensieve [7] by 30%, and two

versions of MPC [6] (robustMPC and fastMPC) by 32.6%
and 67.4% in terms of average QoE, respectively. In terms of

average bitrate, HotDASH achieves 14.31% improvement over

Pensieve [7].

II. SYSTEM OVERVIEW

In this section, we first provide a background of video

streaming using DASH, and introduce our system HotDASH

in that context.

A. Background

HTTP-based adaptive video streaming (standardized as

DASH) is the delivery solution of choice for most video

service providers in recent times. Fig. 1 illustrates the working

of a client DASH player: the ABR controller in the player

receives playing conditions in terms of throughput (from

the throughput estimator) and buffer size (from the buffer

controller). It then determines an optimal bitrate for the next
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Fig. 1: Adaptive bitrate streaming using DASH in state-of-the-art
approaches: The ABR controller in the client player relays playback
conditions (thoughput, buffer occupancy, etc.) to an external ABR
server, which responds with an optimal bitrate for the next chunk.

chunk, and initiates download from the corresponding CDN

(or content server).

Certain state-of-the-art ABR algorithms require running

expensive computations for optimal bitrate selection (e.g.,

Pensieve [7], which trains a neural network for bitrate deci-

sions). While an in-player implementation is possible, device

resource limitations (e.g., in smartphones and smart TVs)

may hinder performance of the client player. The complex

computation may be pushed to an additional stateless ABR

server in such cases, as shown in Fig. 1. Being stateless, the

ABR server is able to serve requests from multiple clients with

different playing conditions simultaneously, with no additional

overhead. Furthermore, the performance of ABR algorithms

has been found to remain largely unaffected by the latency

introduced due to player-ABR server packet exchanges [7].

Keeping these advantages in mind, our proposed system Hot-

DASH employs an ABR server to handle bitrate selection and

prefetch decisions, using an RL model as outlined in §I.

B. HotDASH: System Overview

HotDASH consists of two major components (as shown in

Fig. 2): (1) hotdash.js, which is a prefetch-enabled version

of the open source DASH player dash.js [12], and (2) the

HotDASH decision engine, which acts as the ABR server

(as mentioned in §II-A). After a video chunk download is

complete, hotdash.js prepares a set of parameters (e.g., last

chunk bitrate, throughput, buffer occupancy, next hotspot and

regular chunk size, etc.), which combine together to form the

playback state information. This information is then sent to

the external ABR server HotDASH decision engine, in the

form of a HTTP request. The decision engine responds with

two outputs, i.e., a prefetch decision (yes/no), and the optimal

bitrate for the next chunk. hotdash.js initiates download of the

corresponding chunk accordingly. In the following section, we

delve deeper into the design of the HotDASH decision engine.

III. HOTDASH DECISION ENGINE

In this section, we describe the design considerations which

influenced the design of the HotDASH decision engine, and

the reinforcement learning (RL) model which is employed to

enable optimal prefetch and bitrate decisions. We recall from

 

Playback State 
Information 

Bitrate & Prefetch 
Decisions 

hotdash.js 
HotDASH 
Decision 
Engine 

Fig. 2: HotDASH overview: Our system consists of 2 components,
i.e., the prefetch-enabled player hotdash.js, and the HotDASH deci-
sion engine, which computes optimal bitrate and prefetch decisions.

§II-B that the decision engine is entrusted with the following

responsibilities during a chunk download opportunity: (i)

decide whether or not to prefetch the next hotspot chunk, (ii)

decide the bitrate of the next hotspot chunk if prefetch decision

is yes, and (iii) decide the bitrate of the next regular chunk if

prefetch decision is no.

A. Prefetch Decision Considerations

The decision involving prefetch is non-trivial, since indis-

criminate prefetching may lead to abnormally high rebuffering

time. A mistimed prefetch may make the player wait for

two chunk intervals – the prefetched chunk and the next in-

sequence chunk – before resuming play. Again, if prefetch

happens when the bandwidth is low, hotspot chunks end

up getting lower bitrates, which defeats the purpose of our

system. The bitrate at which prefetch is possible at the current

instance is also important (if bitrate would be low, prefetching

would result in no additional benefit). In a nutshell, the

decision-making at a particular instance of time depends on

the following factors: (1) current environment under which

the player is operating, which involves bandwidth and buffer

conditions, (2) detailed knowledge regarding the upcoming

video chunks (in terms of chunk size and position in the

video), for both hotspot and regular chunks, and (3) the bitrate

at which prefetching would occur (if it were to occur), and the

bitrate at which the next regular chunk would be downloaded

(if prefetching now is deemed as a poor choice).

Therefore, with the objective of enabling scrupulous

prefetch decisions, we identify the following states, which

capture all the information required to generate an optimal

prefetch decision:

1) Player environment (say, S1), which captures information

related to the bandwidth and buffer conditions currently

experienced by the client player;

2) Regular chunk state (say, S2), which captures details re-

garding the next regular video chunk;

3) Hotspot chunk state (say, S3), which captures details related

to the next hotspot video chunk;

4) Bitrate decisions (say, S4), which captures the bitrates for

the next hotspot chunk as well as the next regular chunk

(both are required since prefetch decision may be yes or

no).

The above discussion leads to an interesting observation:

it is not sufficient to generate prefetch and bitrate decisions
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Fig. 3: HotDASH decision engine: The client player hotdash.js
initiates a ABR request by sending across details of the player
operating environment, and details of next hotspot and regular chunk
to our cascaded model, which generates prefetch and bitrate decisions
as the final output.

for a download opportunity simultaneously since the prefetch

decision internally depends on the hypothetical bitrate deci-

sions (for a hotspot if prefetch were to take place, and for

a regular chunk, if not). This dependency leads us towards

a cascaded design for the HotDASH decision engine, where

the hypothetical bitrates are first generated using a bitrate
selection model, and are fed as part of the input to the prefetch
decision model.

B. Cascaded Design

The cascaded design of HotDASH is illustrated in Fig. 3.

During a typical chunk download opportunity, the ABRCon-
troller in hotdash.js generates the following state parameter

sets: (S1) Player environment, (S2) Regular chunk informa-

tion, and (S3) Hotspot chunk information. The states S1

(player environment) and S2 (regular chunk information) are

combined to form the input to the bitrate selection model,
which generates the optimal bitrate for the next regular chunk,

if it were to be downloaded next. Similarly, the states S1

(player environment) and S3 (hotspot chunk information) are

combined to form the input for another execution of the bitrate
selection model, thus generating the optimal bitrate for the next

hotspot chunk this time around. The bitrate decisions obtained

from the two executions of the bitrate selection model are

combined to form S4 (bitrate decisions).

Now that all the four required state-sets have been gener-

ated, a combination of these act as input to our prefetch deci-
sion model (the exact parameters used have been summarized

in Table I). The output is a binary (yes/no) prefetch decision;

if no is chosen, then the former bitrate is selected, and if

yes is chosen, then the latter bitrate is selected. The prefetch

decision, and the corresponding bitrate, jointly form the output

of the HotDASH decision engine, and are sent back to the

ABRController in hotdash.js, which initiates the corresponding

download, thus completing the round of execution.

C. Reinforcement Learning for Optimal Decisions

The discussion above on a cascaded design for HotDASH

led us to two different decision models, the bitrate selection

TABLE I: HotDASH Decision Engine State Parameters

Category Param Significance

Player
Environment
(S1)

xt Throughput measurement for the last chunk
τt Download duration for the last chunk
bt Play buffer occupancy
lt Bitrate of last downloaded chunk

Regular Chunk
State (S2)

�nt m available sizes for the next regular chunk
ct No. of chunks remaining in video

Hotspot Chunk
State (S3)

Bt Total buffer occupancy (includes
prefetched)

�Nt m available sizes for the next hotspot chunk
Ct No. of hotspot chunks remaining in video
Pt No. of chunks till playback of next hotspot

chunk
�Vt Distance (in chunks) from every hotspot

chunk, | �Vt| = h
Lt Bitrate of last downloaded hotspot chunk

Bitrate
Decisions (S4)

Ar
t Bitrate returned if next chunk is regular

Ah
t Bitrate returned if next chunk is hotspot

model and the prefetch decision model. Owing to a large num-

ber of highly variable input parameters influencing prefetch

and bitrate decisions, we realize that devising a straightforward

optimization function, taking all these factors into considera-

tion, is particularly difficult. Furthermore, the unpredictability

in bandwidth when connected to a WiFi network in the wild,

renders any fixed control rule sub-optimal. Consequently, we

rely on the ability of a reinforcement learning algorithm, to

experience a large variety of network conditions, and to learn

from decisions made in the past.

An RL algorithm operates in an environment E, takes as

input a state S, takes an action A, and receives a reward

R against its action. As the algorithm iterates over a large

corpus of states and keeps receiving reward against all actions

it performs, it learns the most optimal action for a particular

state, such that the reward is maximized. In case of the bitrate
selection model, the video player is the environment E, S1+S2

and S1+S3 form the input state S in two different executions,

the QoE metric used to optimize the model is the reward R
(described in §V-A4), and the corresponding bitrate decision

is the action A. In case of the HotDASH decision engine, the

environment E remains the same, S1 through S4 combine to

form the input state S, the QoE metric designed specifically to

train it is the reward R (described in §V-A5), and the binary

prefetch decision is the action A.

D. RL Methodology

In this subsection, we describe the methodology adopted

to train each of the reinforcement learning models bitrate
selection model and prefetch decision model.

1) Training Mechanism: In the training phase, the Hot-

DASH RL agent explores the video streaming environment

E. In the most realistic case, the learning should take place

using a real video playback implementation. However, such an

implementation demands that for each training data point, the

agent waits till a video chunk is downloaded from the content

server over the Internet, before moving on to the next data

point. This would result in unnecessary wastage of valuable

training time.
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In order to circumvent this problem, we implement a

simulated playback environment for training our RL model.

The simulator closely replicates a real video streaming sce-

nario, by maintaining a buffer, which is similar to a real

video client’s playback buffer. In this context, we define two

buffer parameters: (1) Total buffer, which maintains the total

occupancy of the client buffer (including the out-of-order

prefetched chunks), and (2) Play buffer, which maintains the

duration for which playback is still possible without stalling

(i.e., in-sequence buffer occupancy). These buffer parameters

have been implemented in our version of the client player,

i.e., hotdash.js; the exact implementation details have been

explained in §IV-B2. Our simulation environment also main-

tains these two buffer parameters and behaves in exactly the

same way as the system implementation in hotdash.js. When

prefetch and bitrate decisions have been made for a chunk

download, the simulator increments the total buffer with a new

chunk. If the decision was to download a regular chunk, the

play buffer is also incremented by one video chunk. However,

while this download is taking place, the player continues to

drain the play buffer by rendering downloaded chunks; this

phenomenon is simulated by first computing the download

time of the last chunk, and then draining the play buffer by the

same amount. The download time is simply computed as the

quotient of the size of the corresponding video chunk (which

depends on the bitrate decided), and the bandwidth as obtained

from the trace. The simulator also keeps track of rebuffering

instances, i.e., when the playback buffer has been completely

drained before the download of a new in-sequence chunk is

complete, and records the exact time for which rebuffering has

taken place. In case the total buffer is full, the simulator sleeps

for a certain duration before downloading the next designated

chunk, as is the case in a real DASH client implementation.

After the completion of each video chunk download, the

simulator prepares the parameters which define the state S
for our RL agent (exact parameters provided in Table I).

Processing of state S by the RL agent is described in §III-D2.

2) Training Algorithm: HotDASH uses A3C [13], a state-

of-the-art actor-critic method, which involves training two

neural networks, i.e., an actor network, and a critic network.

Fig. 4 illustrates the RL implementation for the prefetch
decision model using A3C. Each parameter of state St is

passed on to the actor network as well as the critic network,

enabling the RL model to learn a decision policy. The bitrate
selection model employs a similar implementation, with the

state S consisting of a subset of the states (S1 and S2 for

regular chunk bitrate decisions, and S1 and S3 for hotspot

chunk bitrate decisions).

Inputs: After the download of each chunk t, the RL learn-

ing agent takes state inputs St = [xt−1, τt−1, bt, lt, �nt, ct,
Bt, �Nt, Pt, �Vt, Lt, A

r
t , A

h
t ] to its neural networks (significance

of notations has been provided in Table I).

Training: Given St, the RL agent needs to take an action At

that corresponds to the prefetch decision for the next video

chunk download opportunity. The agent selects actions based

on a policy, defined as a probability distribution over actions

        

STATE St 
Last Chunk Throughput 

xt-1 
Last Chunk Download Time ࣎t-1 

Play Buffer Occupancy 
bt 

Last Chunk Bitrate 
lt 

Next Regular Chunk Sizes 
nt

1 nt
2 nt

m 

No. of Chunks Remaining 
ct 

Total Buffer Occupancy 
Bt 

Next Hotspot Chunk Sizes 
Nt

1 Nt
2 Nt

m 

Chunks till Hotspot Playback 
Pt 

Dist. from Hotspot Chunks 
Vt

1 Vt
2 Vt

h 

Last Hotspot Chunk Bitrate 
Lt 

Next Regular Chunk Bitrate 
At

r 

Next Hotspot Chunk Bitrate 
At

h 

… 

1D-CNN 

1D-CNN 

1D-CNN 

… 
… 

… 
… 
… 
… 
… 
… 
… 

1D-CNN 

1D-CNN 

1D-CNN 

… 
… 

… 
… 
… 
… 
… 
… 
… 

… 

ACTOR NETWORK 

CRITIC NETWORK 

Policy ߨఏ(ݏ௧, ܽ௧) 

Value ܸగഇ(ݏ௧) 

Fig. 4: Prefetch decision RL model: The prefetch decision model is
implemented using A3C [13], an actor-critic network. The state St

consists of 13 parameters, which is a combination of sub-states S1
through S4 (as listed in Table I).

π : π(St, At) → [0, 1]. π(St, At) is the probability that

action At is taken in state St. The prefetch decision model
and bitrate selection model use neural networks (NNs) to

learn this policy. After applying each action, the simulated

environment provides the learning agent with a reward Rt for

that chunk. The primary goal of the RL agent is to maximize

the expected cumulative (discounted) reward that it receives

from the environment.

Parallel training: We spawn multiple learning agents (default

is 16) in parallel to hasten training, as suggested in [13].

Each agent is configured to experience a different set of

input parameters, based on the provided bandwidth trace. The

central agent collects all [state, action, reward] tuples from

these agents, and aggregates them to generate a single model.

IV. HOTDASH IMPLEMENTATION

We have now looked at the design of the HotDASH decision

engine. In this section, we delve in-depth into the implemen-

tation specifics of each component of HotDASH.

A. HotDASH Decision Engine Implementation

Following up from our discussions in §III, the HotDASH de-

cision engine employs two RL-based models, i.e., the prefetch
decision model and the bitrate selection model. We use the

state-of-the-art ABR algorithm Pensieve [7], which also uses

A3C [13] to learn optimal bitrates, as the bitrate selection
model (we leverage a pretrained model provided by Pensieve,

for this purpose). The prefetch decision model, on the other

hand, is implemented in TensorFlow [15], by passing 8 past

values of vector inputs (�nt and �Nt) to a 1D convolution layer

(CNN) with 128 filters, each of size 4 with stride 1. The

remaining scalar parameters are passed to another 1D-CNN

having the same shape. The results obtained from these layers

are then aggregated in a hidden layer, which uses 128 neurons
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Fig. 5: Control Flow in hotdash.js: The schematic shows the flow of
control in hotdash.js, from the end of one video chunk download, till
the end of the next video chunk download.

and applies a softmax function. The critic network uses the

same neural structure; however, its final output is a linear

neuron (devoid of activation function). During the training

phase, we set the value of discount factor γ = 0.99, thus

allowing current actions to be influenced by 100 future steps.

The learning rates for the actor network is set at 0.0001, while

that for the critic network is set at 0.001. The entropy factor

β is configured such that it gradually decays from 1 to 0.1
over 100, 000 iterations.

B. hotdash.js Implementation

We recall that the client video player in our system, i.e.

hotdash.js, is implemented on top of the reference DASH

player implementation dash.js [12]. By default, dash.js pro-

gresses in a sequential stop-and-wait manner: once the down-

load of a chunk starts, the scheduler repeats through sleep

cycles, until the download is complete, and the chunk data

is added to the buffer. Then it initiates the download of the

next chunk in the pipeline, i.e., the next in-sequence chunk.

However, prefetching a chunk requires two specific additional

abilities: (1) requesting a video chunk by playback time,

and (2) managing buffer such that out-of-order prefetched

chunks can be accommodated, and appropriately rendered for

playback. We describe in detail how we implement each of

the above requirements in our version of the DASH player,

i.e., hotdash.js.

1) Control Flow for Prefetch-enabled Player hotdash.js:
The control flow in our implementation has been illustrated

in detail in Fig. 5. We implemented the rule SpecificFrag-
mentRequestRule, which enables downloading a video chunk

by time (this time is the playback time of the chunk, when

played offline/without rebuffering). We further equipped the

ABRController and ScheduleController to implement prefetch

decisions and bitrate decisions.

The flow of control in hotdash.js is as follows. Once the

download of a chunk ends, the ScheduleController initiates

the process for downloading the next chunk. It requests

the ABRController for the prefetch decision (whether next

download will be a hotspot prefetch or a regular chunk),

and the corresponding bitrate (1). The ABRController requests

the BufferController for buffer occupancy status (2), and

the ThroughputEstimator for estimated throughput (4); the

corresponding responses are sent as buffer occupancy B (3),

and throughput estimate T (5), respectively. Hereafter, the

ABRController combines B and T along with other relevant

parameters (discussed in §III), and sends this combination

across to the ABRServer (HotDASH decision engine) as state

S (6). The ABRServer returns the prefetch decision P , and the

corresponding bitrate Q, based upon S (7). The ABRController
now sends P and Q to a rule (8), called the SpecificFragmen-
tRequestRule, which has the ability to build a video chunk

request based upon specified playback time; the chunk request

R is returned to the ABRController (9), and then back to the

ScheduleController (10). The ScheduleController executes this

request (11), to fetch the actual video chunk bytes from the

corresponding CDN (12). The chunk bytes are then handed

over to the BufferController (13), which adds these chunks

bytes to the player buffer. The ScheduleController is now

prepared to download the next chunk. While this entire flow

of control takes place, the buffer gets continually depleted by

the video player, by rendering chunks for playback.

2) Buffer Management: dash.js is equipped with an inter-

nal buffer which is capable of storing out-of-sync chunks,

in addition to regular in-sequence chunks. We exploit this

capability to implement the buffer in hotdash.js. We account

for two logical buffer parameters: (1) Play buffer, and (2)

Total buffer (introduced in §III-D1). The play buffer refers

to the part of the internal buffer, which stores in-sequence

video bytes, which have been downloaded, but are yet to be

rendered (played on the video player). Note that in order to be

played seamlessly, the buffer necessarily requires video bytes

in sequence. However, when a prefetch decision is executed,

hotdash.js ends up downloading a video chunk which is

completely out-of-sequence. Such prefetched hotspot chunks

are also stored in the internal buffer, and these buffer segments

combined with the play buffer, form the total buffer. Total

buffer is therefore the actual measure of buffer occupancy,

while play buffer is a measure of how long the video player

can go on playing without stalling (rebuffering). The total

buffer gets boosted whenever a video chunk is downloaded;

the play buffer, however, gets boosted only when a regular

chunk is downloaded. Video bytes get rendered continuously,

thus depleting both the play buffer and total buffer (except in

the case of rebuffering, when there is no play buffer left to

deplete).

Fig. 6 illustrates this concept using an example scenario,

for playback of a video segregated into 7 chunks. The chunk

numbers 5 and 7 are the hotspot chunks, and have been labeled

with the letter ‘H’. We represent downloaded content, yet to

be played with the green colour, and already rendered content

with the red colour. For simplicity of explanation, we assume

that the buffer is depleted by one-half of a chunk by the

player, in the time required to download a chunk. First, chunk

numbers 1 and 2 are downloaded in-sequence ((a) and (b)).

Then the hotspot chunk number 5 is downloaded (c); the play

buffer still ends at chunk number 2. Then chunk number 3 is

downloaded in-sequence (d), followed by a prefetch of hotspot

chunk number 7 (e). Now, as chunk number 4 is downloaded

in-sequence (f), buffer reconciliation occurs, which means that

170



 H H 
Play 

Buffer 

(a) Buffer after download of in-seq. chunk 1
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(b) Buffer after download of in-seq. chunk 2
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(c) Buffer after prefetch of hotspot chunk 1

 H H 
Play 

Buffer
Rendered Prefetch 

Buffer 1

(d) Buffer after download of in-seq. chunk 3
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(e) Buffer after prefetch of hotspot chunk 2
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(f) Buffer after download of in-seq. chunk 4

Fig. 6: Buffer management in hotdash.js: The buffer in hotdash.js is equipped to store both regular chunks, and prefetched hotspots chunks.

a prefetched chunk (number 5) gets added to the play buffer,

and strengthens it by two chunks at-a-time.

V. EVALUATION

We evaluate our proposed system HotDASH both by illus-

trating the bitrate improvement obtained due to the ability to

prefetch, and by analyzing the impact of prefetch decisions

on overall QoE. In this section, first we discuss the method-

ology used to evaluate HotDASH, and then we present the

corresponding results.

A. Methodology

The methodology used for HotDASH is as follows.

1) Network Trace Datasets: In order to evaluate the per-

formance of HotDASH on realistic network environments, we

leverage two publicly available datasets, and create a corpus

of 2000 bandwidth traces of 320 secs, similar to Pensieve [7].

Source Traces: The datasets include a broadband dataset pro-

vided by the US Federal Communications Commission [16],

and another from Telenor’s HSDPA connections in Nor-

way [17]. The US dataset consists of more than 1M traces,

with each trace containing average throughput values for every

5 secs, logged over an interval of 35 mins. The Norway dataset

contains 30 mins traces of scenarios when users were in transit.

Dataset Generation: For our experiments, we construct a

trace corpus using 1000 randomly selected intervals (spanning

320 secs each) from each dataset. The throughput bounds

of 0.2 Mbps (lower) and 6 Mbps (higher) are enforced,

so that trivial cases may be avoided (above 6 Mbps can

sustain maximum bitrate throughout, whereas below 0.2 Mbps

cannot sustain any available bitrate). All traces are formatted

according to the requirements of the Mahimahi [18] network

emulation tool, which we use for our live experiments.

Train-Test Segregation: In order to train HotDASH, we

randomly sample 80% of the traces; the remaining 20% is

used for testing HotDASH and the baseline ABR algorithms.

2) Hotspot Selection and Generalization: We train Hot-

DASH with a fixed combination of hotspot chunks,and test it

(and baseline algorithms) over 100 carefully selected hotspot

combinations, to determine whether it generalizes well.

Number of Hotspot Chunks: In all our experiments, we

designate 10% of the video chunks as hotspot chunks (say, C
chunks). This is based on the assumption that very high user

interest can sustain for around 10% of playback time (e.g., 12
mins in a 2 hour movie).

Hotspot Combinations for Training and Testing: During

training, we randomly select a combination of C hotspot

chunks, and keep this combination fixed for all training

epochs. During testing, however, our aim is to ascertain

whether HotDASH generalizes well across a wide selection

of hotspot combinations. In order to achieve this, we employ

the WSP space-filling algorithm [19]. WSP enables selection

of a set of points in an n-dimensional space, such that the

points are at least d (input parameter) distance apart from each

other, and are distributed such that the entire space is well-

explored. We input the number of dimensions as C (number

of hotspot chunks), and allow WSP to generate a set of 100
hotspot combinations. No repetition of values are allowed in

a single combination.

3) Baseline ABR Algorithms: We present performance

comparisons between HotDASH and six baseline algorithms,

which are representative of the state-of-art ABR techniques.

1) Buffer Based: Huang et al. [14] proposed a buffer-based

algorithm, which attempts to select bitrates such that the

buffer occupancy is always maintained above 5 seconds.

The highest available bitrate is selected if there is a 15
seconds buffer cushion.

2) Rate Based: Bandwidth experienced during last chunk

download is naı̈vely estimated to be the current throughput.

The highest bitrate supported by this throughput is selected.

3) Festive: Festive [20] is a more sophisticated rate-based

algorithm, where throughput prediction is done using the

harmonic mean of the throughput values observed during

the last 5 chunk downloads. The highest bitrate below this

throughput estimate is selected.

4) FastMPC: FastMPC [6] performs optimization for a QoE

metric (discussed in §V-A4), over the next 5 video chunks,

based on past throughput estimation and buffer occupancy

observations.

5) RobustMPC: RobustMPC [6] is a variation of FastMPC,

which further improves it by considering and account-

ing for errors observed between predicted and observed

throughput values during last 5 chunk download instances.

6) Pensieve: Pensieve [7] selects the next optimal bitrate by

using reinforcement learning to optimize over a QoE metric

(discussed in §V-A4).

4) Quality of Experience (QoE) Metrics: Various studies
over the last decade have identified different metrics for ac-
curately measuring the quality of experience (QoE) associated
with video streaming [4], [21]–[24]. The general QoE metric

171



used by MPC [6] is defined as:

QoE =

n∑
i=1

q(Ri)− μ.

i∑
i=1

Ti −
n−1∑
i=1

|q(Ri+1 − q(Ri)| (1)

QoE is defined for a video with n chunks; Ri is the bitrate

of chunki, and q(Ri) maps this bitrate to a utility value, which

represents the quality perceived by the user. The rebuffering

time resulting from downloading chunki at bitrate Ri is given

by Ti; μ is a weight which determines how heavily rebuffering

is penalized. The final term accounts for playback smoothness,

and penalizes QoE when consecutive bitrates change abruptly.

In a nutshell, QoE increases with high bitrates, but diminishes

with rebuffering, and lack of smoothness.

We consider three different variations of QoE for our

performance evaluation, each of which defines a different

q(Ri), and a different value of μ.

1) QoElin: In the linear case,

q(Ri) = qlin(Ri) = Ri; μ = μlin = 4.3

MPC [6] used this metric for optimization.
2) QoElog: In the logarithmic case,

q(Ri) = qlog(Ri) = log(R/Rmin); μ = μlog = 2.66

This metric is based on the rationale that some users cannot

perceive the improvement in quality at higher bitrates

as prominently, as they do when the bitrates are lower.

BOLA [25] used this metric in their implementation.
3) QoEhd: In the high definition (HD) case, q(Ri) assigns

static scores for different bitrate values:

q(Ri) = qhd(Ri) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if Ri = 0.30
2, if Ri = 0.75
3, if Ri = 1.20
12, if Ri = 1.85
15, if Ri = 2.85
20, if Ri = 4.30

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

; μ = μhd = 8

This metric favors HD video rendering by assigning

increasingly higher values to higher bitrates. Pensieve [7]

used this metric alongside QoElin and QoElog.

5) QoE Metric used for Training HotDASH: We train our
RL model in the HotDASH decision engine, using a variant
of QoElin as the RL reward metric. Let a target video
consisting of n chunks be represented by the ordered set
V = {v1, v2, ..., vn}. We define an ordered set H ⊂ V ,
which consists of all m hotspot chunks present in the video:
H = {h1, h2, ..., hm}, such that m ≤ n. We recall that the
objective of our model is to determine prefetch opportunities,
such that the hotspot bitrates are maximized, but at the
same time, other objectives (maximum regular chunk bitrates,
minimum rebuffering, and maximum smoothness) are not
compromised. We incorporate this notion in the QoE metric
by defining QoEhotspot, a variant of QoElin, such that:

QoEhotspot =
∑
h∈H

qhd(Rh) +
∑

v∈V−H

qlin(Rv)

− μ.
i∑

i=1

Ti −
n−1∑
i=1

|qlin(Ri+1)− qlin(Ri)| (2)

The RL model is encouraged to download hotspot chunks

at higher bitrates, by using the HD reward function qhd(.)
to determine bitrate utility of hotspot chunks. In contrast, the

bitrate utility for regular chunks is determined using the linear

function qlin(.). The rest of the terms remain the same as in

QoElin. This modification in the bitrate reward for hotspot

chunks reflects the user’s preference for hotspot chunks over

regular chunks, while keeping other QoE indicators intact.

6) Experimental Setup: We implemented all the baseline

algorithms in hotdash.js, which is based on dash.js (version

2.4) [26] 2. The baseline algorithms Buffer Based, Rate Based,

and Festive were implemented entirely in hotdash.js. Since

HotDASH, Pensieve [7], and both variants of MPC [6] rely on

an external ABR server for bitrate selection decisions (and also

prefetch decisions in case of HotDASH), we implemented the

servers (with corresponding algorithm implementations) us-

ing Python HTTPBaseServer. Hooks were provided inside

hotdash.js for interaction (sending request with playback state,

and receiving response with decisions) with the ABR server,

using XMLHttpRequests. In our setup, the ABR server and

the video player were run on different client machines in the

same local network. The player hotdash.js was configured with

a (total) buffer capacity of 60 seconds. We used the “Envivio-

dash3” video for all our experiments [27]; this video has been

encoded using the H.264/MPEG-4 codec, and is available at 6
qualities – 240p (bitrate: 300 Kbps), 360p (bitrate: 750 Kbps),

480p (bitrate: 1200 Kbps), 720p (bitrate: 1850 Kbps), 1080p

(bitrate: 2850 Kbps), and 1440p (bitrate: 4300 Kbps). The

video consists of 48 chunks of approx. 4 seconds each, and has

a total playback time of 193 seconds. The video chunk server

was implemented in the same workstation (Ubuntu 16.04)

where the video player was run. The chunks were served

using Apache2 (version 2.4.18), while the client player used a

Google Chrome browser (version 60). The network emulation

tool Mahimahi [18] was used to emulate network conditions

represented by the throughput traces generated in §V-A1.

B. Results

In this subsection, we evaluate our approach HotDASH,

from three different perspectives. First, we explore the impact

of prefetch decisions taken by HotDASH. Second, we observe

how HotDASH fares against baseline algorithms. Third, we

dive deeper into HotDASH performance, and illustrate how

different components contribute to the QoE metrics consid-

ered.

1) Impact of Prefetch Decisions: We note that the primary

aim of HotDASH is to prefetch hotspot chunks, so that they

can be played at a higher bitrate, than when left to the vagaries

of unpredictable bandwidth.

Bitrate Improvement for Hotspot Chunks: We compare

the bitrate values (in Mbps) and the bitrate levels, between

prefetched hotspot chunks and regular chunks. The bitrate

levels 0 through 5 correspond to the bitrates 0.3, 0.75, 1.2,

1.85, 2.85, and 4.3 Mbps respectively. The comparison is

performed by identifying prefetch opportunity windows: a

particular hotspot chunk can only be prefetched in the time

interval between the time instance of last prefetch, and the

2The code is available at https://github.com/SatadalSengupta/hotdash
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(a) Bitrate values for prefetched
hotspot chunks & regular chunks

(b) Bitrate levels for prefetched
hotspot chunks & regular chunks

(c) Avg. bitrate values for
prefetched & regular chunks

(d) Avg. bitrate levels for
prefetched & regular chunks

Fig. 7: Bitrate improvement: HotDASH prefetched hotspot chunks at 14.31% better bitrate on average, than regular chunks.

time instance when all regular chunks before it have already

been downloaded. We consider the bitrate of the prefetched

hotspot chunk as the hotspot bitrate (and the corresponding

bitrate level as the hotspot bitrate level), while we compute the

mean bitrate (and level) of all regular chunks in the prefetch

opportunity window, and regard it as the regular chunk bitrate

(and the corresponding level as the regular chunk bitrate level).

Fig. 7 illustrates the improvement in bitrates for hotspot

chunks due to prefetch decisions taken by HotDASH. Fig. 7a

shows that the bitrates at which hotspots were downloaded,

were generally higher than the bitrates for regular chunks.

Similarly, Fig. 7b demonstrates a similar observation for the

bitrate levels. The improvement in average bitrate between

prefetched hotspot chunks and regular chunks, can be observed

in Fig. 7c, while the corresponding improvement in bitrate

level is presented in Fig. 7d. The mean bitrate improvement

due to prefetching is computed to be 14.31%.

Prefetch Decisions: The frequency of prefetch decisions per

video playback session is shown in Fig. 8. We observe that

HotDASH utilizes prefetch opportunities fairly aggressively,

by deciding to prefetch all 5 hotspots in the video around

40% of the time. This is followed by prefetching 4 out of 5

(∼36%), 3 out of 5 (∼18%), and then the remaining (less than

10%). While the prefetching is aggressive, the observed bitrate

improvements demonstrate that HotDASH uses its prefetch

opportunities wisely.

2) QoE Improvement over Baseline Algorithms: In order

to compare HotDASH with the baseline ABR algorithms

(described in §V-A3), we perform live experiments on our

corpus of network traces using hotdash.js. The QoE metric

considered for these experiments is QoEhotspot, as defined in

§V-A5. Since the baseline algorithms do not have the ability

to prefetch, if the throughput goes down during download

of hotspot chunks, then their bitrate may fall drastically.

Since hotspot chunks obtain QoE according to qhd(.), a high

difference in hotspot bitrate would result in a much larger QoE

difference, than in the case of regular chunk bitrate. In order

to facilitate a fair comparison, we force baseline algorithms

to always download hotspot chunks at the highest bitrate

available for the chunk. This elevates the bitrate component

of the QoE metric to the largest extent possible.

The performance of HotDASH in comparison to baseline

ABR algorithms, is depicted in Fig. 9 and 10. Fig. 9 illustrates

that HotDASH nearly always obtains more than 80% QoE

(w.r.t. minimum observed QoE). The raw values of QoE (in the

figure legend) show that HotDASH is the only ABR algorithm

which ends up with a positive average QoE. In Fig. 10, the

average normalized (w.r.t. worst performing baseline Festive)

QoE shows that HotDASH outperforms Buffer Based, which is

the best performing baseline algorithm, by 16.2%. HotDASH

outperforms Pensieve, RobustMPC, Rate Based, and FastMPC

by 30%, 32.6%, 44.3%, and 67.4%, respectively.

3) Overall QoE Comparison Between HotDASH and Pen-
sieve: We compare the average value of individual QoE com-

ponents, as well as total QoE, for HotDASH (where prefetch is

enabled), and for Pensieve [7] (where prefetch is not allowed).

We consider all three QoE metrics discussed in §V-A4, i.e.,

QoElin, QoElog, and QoEhd. The comparisons are presented

in Fig. 11. We observe that the average bitrate QoE is always

higher in case of HotDASH, irrespective of the QoE metric

chosen. This may be attributed to the fact that HotDASH

focuses on providing higher bitrates to chunks by making

better utilization of available throughput. However, the focus

on higher bitrates results in higher rebuffering penalty across

all three QoE metrics. The smoothness penalty, however, is

again better in case of HotDASH across all the three scenarios.

Overall, HotDASH obtains better QoE in two cases (QoElin

and QoEhd) out of three, with the exception of QoElog. Since

QoElog disregards higher bitrates by awarding increasingly

lower QoE as bitrates go up, the advantage of using a prefetch-

enabled system is lost on it.

VI. RELATED WORK

Research on adaptive bitrate video streaming over the years

can be broadly classified into 3 categories: (1) determining

Quality-of-Experience (QoE) for users, (2) video preparation

methods, and (3) bitrate adaptation strategies for better QoE.

Determining Quality-of-Experience: Researchers realized

early on that objective technical parameters, such as the Peak-

Signal-to-Noise-Ratio (PSNR), do not necessarily correlate

with the viewing experience of an user. A hybrid mecha-

nism, which combined the goodness of objective scores (e.g.,

PSNR), and subjective scores (e.g., MOS), was proposed in

2009 [21]. Song et al. attempted to understand how user

preferences and prior playing conditions impacted QoE; they

concluded that user gender and frequency of video watching

impacts QoE significantly, as does the bitrate range [2]. Gender

was concluded to be a major factor in QoE prediction in a

more recent study [4]. Mok et al. studied the relationship

among network quality, application QoS and user QoE, and
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Fig. 8: Frequency (normalized) of prefetch
decisions taken during each video playback
session. HotDASH utilizes prefetch opportuni-
ties well, and decides to prefetch all 5 hotspots
around 40% of the time.

Fig. 9: CDF of QoEhotspot obtained for each
algorithm is shown. HotDASH nearly always
obtains positive QoE (above 80% normalized
QoE), which is in sharp contrast with the
baselines algorithms.

Fig. 10: Normalized QoEhotspot (w.r.t. FES-
TIVE) obtained for each algorithm. Hot-
DASH outperforms the best performing base-
line BufferBased by 16.2%, followed by Pen-
sieve, RobustMPC, RateBased, and FastMPC.

(a) QoE components for QoElin (b) QoE components for QoElog (c) QoE components for QoEhd

Fig. 11: Comparison of individual QoE components and total QoE between HotDASH (where prefetch is enabled), and Pensieve (where
prefetch is not possible). HotDASH always obtains better bitrate QoE, and results in better total QoE in 2 out of 3 cases (QoElin & QoEhd).

how it manifests into user activities on the player (e.g., pauses,

reducing viewing area, etc.) [23], [24]. Studies also revealed

that rebuffering is the most detrimental QoE factor for most

users, although the extent of QoE decline depends on the

type of content (e.g., live content is more affected) [3], [28].

Balachandran et al. concluded that the type of video (live

vs. streaming), connectivity (cable/DSL vs. wireless), and

device type (PC vs. mobile devices vs. TV), are the 3 most

important factors which affect user engagement [29]. Song

et al. proposed an adaptive mobile video streaming strategy

based on QoE factors such as video content and encoding,

bandwidth limitations, device features, and viewing context;

they concluded that focusing on these factors maximized

overall user engagement and mimimized resource cost [30].

Recently, a comparative study of 3 DASH players revealed

that the preferred adaptation algorithm varies with players and

their configuration [31]. In this work, we focused on the QoE

variability due to difference in content preferences of users,

and proposed a system which accounts for it.

QoE-aware Video Preparation: In the space of video prepa-

ration with QoE considerations, Zhang et al. proposed de-

tection of points-of-interest for video generation, based on

sensor metadata and multiple camera views [32]. Choi et al.
defined a simple and fast metric for identifying blockiness in

frames of videos encoded at different bitrates, and optimized

video generation for least perceptual blockiness [33]. Wu et al.
identified that mobile users seldom perceive bitrate differences

as prominently as PC users, and tried to minimize bitrate

overhead [34]. In [8], the authors propose a neural model

for determining temporal regions-of-interest in a video, with

the objective of video captioning. This work can serve as a

potential precursor to our system HotDASH, by identifying

the hotspot segments in a video.

Bitrate Adaptation Strategies: We already discussed the

bitrate adaptation strategies Buffer Based [14], Festive [20],

MPC [6], and Pensieve [7] in §V-A3. Additionally, Sun et al.
proposed CS2P, a system which optimizes bitrate adaptation

based on large-scale data-driven throughput prediction [35].

An online learning bitrate adaptation strategy was proposed

in [36]. QUETRA proposes a simple rate adaptation algorithm

by modeling a DASH client as a M/D/1/K queue [37]. Koo

et al. proposed REQUEST, a system which selects bitrate

adaptively over both WiFi and LTE based on constraints

on battery consumption and data usage [38]. Wang et al.
formulates the adaptive video streaming problem as a multi-

step predictive control problem, and optimizes for it [39]. In

this work, we do not work on bitrate adaptation, rather we aim

on redistribution of optimal bitrate selections, by taking into

account the content preferences of users.

VII. CONCLUSION

In this paper, we proposed HotDASH, a system which takes

into consideration content preferences of users during adaptive

video streaming over HTTP. The system enables prefetching

of hotspot chunks, which are video chunks with higher (than

other chunks) user interest associated with them. The prefetch

and bitrate decisions are taken in an opportune manner, such

that higher bitrates are selected for hotspot chunks, but other
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QoE considerations, such as bitrate of regular chunks, rebuffer-

ing, and smoothness, are not heavily compromised. This is

made possible by the application of reinforcement learning

to dynamically learn optimal prefetch decisions and bitrate

decisions through experience, over a large corpus of network

traces. HotDASH achieves an improvement of 16.2% over the

best performing baseline in terms of average QoE, and is able

to improve hotspot bitrates by 14.31%, as compared to regular

chunk bitrates.
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