
MoViDiff: Enabling Service Differentiation for
Mobile Video Apps

Satadal Sengupta∗, Vinay Kumar Yadav†, Yash Saraf‡, Harshit Gupta∗,
Niloy Ganguly∗, Sandip Chakraborty∗, Pradipta De§

∗Dept. of CSE, IIT Kharagpur, Kharagpur 721302, India; †Dept. of CSE, IIT Patna, Patna 801103, India
‡Dept. of CSE, IIT BHU, Varanasi 221005, India; §Dept. of CS, Georgia Southern University, GA 30458 USA

Email: satadal.sengupta@iitkgp.ac.in, {vk7055,yash29saraf}@gmail.com,
{niloy,sandipc}@cse.iitkgp.ac.in, pde@georgiasouthern.edu

Abstract—Among the mobile applications contributing to the
surging Internet traffic, video applications are some of the biggest
contributors. Most of these video applications use HTTP/HTTPS
tunneling making it difficult to apply port based or packet
data based identification of flows. This makes it challenging for
network operators to enforce bandwidth regulation policies for
app based service differentiation due to lack of flow identification
mechanisms for mobile apps. We explore a packet data agnostic
feature of video flows, namely packet-size, to identify the flows.
We show that it is possible to train a classifier that can distinguish
packets from streaming and interactive video apps with high
accuracy. We design and implement a system, called MoViDiff,
with this classifier at the core, that allows bandwidth regulation
between video traffic of two different categories, streaming and
interactive. We show that we can achieve an average accuracy
of 96% in classifying the traffic, with the maximum accuracy
reaching as high as 98%.

I. INTRODUCTION

Video applications on different mobile devices, including
wearables, are steadily adding to the volume of Internet traffic.
To overcome limited connectivity of the devices, often the
traffic is routed through a mobile hub, like a smartphone [1].
When all the video traffic is funneled through a single device,
identifying the source of the traffic can be challenging. Con-
sider a scenario as shown in Fig. 1, where our smartphone acts
as a personal mobile hub that interconnects multiple devices,
such as smart-watches, fitness monitoring devices (e.g., Fitbit),
smart switches for door control and so on. All of these devices
are connected to the Internet through the mobile hub via
wireless tethering. In this setting, while watching a streaming
video from YouTube on the smartphone, one can chat with a
friend via Skype on the smartwatch [2]; this is prevalent in
many scenarios, for example, in remote medical help, remote
tech support, a long-distance couple trying to emulate the
experience of watching a movie together [3], etc. 1

Unfortunately, in such scenarios, the limited wireless band-
width of the smartphone to the Internet now must be shared by
multiple bandwidth hungry video applications. This can hurt
the Quality of Service (QoS) for each application. Assume that
the user can pre-configure preference between YouTube and
Skype. Then, would it be possible to ensure QoS for at least

1Applications such as Rabbit [4] have also been developed, which combine
streaming and video-chatting experience.

Internet

Gateway Device

User on Skype call
on her Smart-watch

User watching a video on
YouTube simultaneously

PERSONAL
MOBILE HUB

Fig. 1: Use Case: Multiple mobile devices connected to the
network through a Personal Mobile Hub. The video applica-
tions running simultaneously on the mobile devices must share
the bandwidth.

the preferred application, if bandwidth requirement for both
cannot be supported? Unfortunately, with current techniques,
it is difficult for the network to distinguish among traffic from
different applications originating from a single device since
typically the traffic is tunneled over HTTP/HTTPS. In addi-
tion, often the data traffic is encrypted making it impossible
to use traditional techniques to identify traffic sources.

Traffic identification relies on identifying unique character-
istics of the application traffic which can be used as signatures.
Common signatures used to identify desktop applications are
the port number used by an application, host address of the
server, or any other identifier in the network packets [5]. This
assumes unencrypted traffic that allows deep packet inspection.
Since majority of mobile app traffic is tunneled over HTTP
[6], [7], simple port based classification does not work. For
most mobile video applications, where the data packets are
encrypted and sent over HTTPS, packet inspection based
approaches will fail.

Although inspection based approaches may fail, other side-
channel information can be exploited to identify the traffic
categories. For example, streaming and interactive traffic,
which are our major concerns in this paper as discussed
with the use case illustrated in Fig. 1, will have different
traffic patterns due to inherent differences in the characteristics
of streaming video and interactive video traffic. Assuming
realistically that a user cannot engage in multiple video apps of
same category simultaneously (like watching videos over two
YouTube instances), it is possible to identify the source type

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100 120 140

B
y
te

s
 r

e
c
e

iv
e

d
 (

lo
g

-s
c
a

le
)

Time (seconds)

YouTube
HotStar

(a) Streaming Video

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100 120 140

B
y
te

s
 r

e
c
e

iv
e

d
 (

lo
g

-s
c
a

le
)

Time (seconds)

Skype
Google Hangouts

(b) Interactive Video

Fig. 2: Traffic distribution in bytes/sec for two types of mobile
video applications showing the difference in traffic characteristics.

INTERNET

WIFI ROUTER

ASUS RT-3200AC

BANDWIDTH

THROTTLING

TCPDUMP

TERMINAL

EMULATOR

MOBILE

Moto X 2nd Gen

Fig. 3: In-Laboratory Testbed Setup for Data
Collection

when the video traffic categories are different. In a preliminary
study, we analyzed the temporal characteristics of traffic from
streaming video and interactive video sources running on
mobile devices. As shown in Fig. 2, video apps within the
same category show similar characteristics, while differing
significantly from apps of another category. Such properties
can be used to distinguish between data packets originating
from video apps of different categories.

In this work, we investigate a simple packet-level feature of
video traffic that can be used to identify the sources (§ IV) –
packet-size. Packet-size varies significantly between streaming
and interactive videos. The feature is used to train a classifier
to identify packets from pre-defined video sources, in presence
of mixed traffic flows. We design and implement a system
called MoViDiff, which can identify packets from different
video sources, and apply pre-configured bandwidth control
policies (§ V). The core of MoViDiff is the classification engine
which runs at the gateway connecting the end devices to the
ISP’s network. We demonstrate the efficacy of the system
using the scenario, as shown in Fig. 1 (§ VI). The classification
results exhibit an accuracy of at least 92%, while reaching
up to 98% in some cases, thus propelling MoViDiff to work
successfully as a bandwidth regulator.

The key contributions of this work are, (1) We show that,
using packet data agnostic properties of video traffic, it is
possible to identify sources of video traffic on a mobile
device from mixed flows. (2) We implement a system, called
MoViDiff, that demonstrates the efficacy of the packet data
agnostic features in video traffic differentiation. MoViDiff can
be used by network operators, and enterprise IT managers for
resource optimization and policy enforcement.

II. RELATED WORK

Classifying traffic from mobile applications has spurred
active research recently due to its practical necessity, as
well as, the challenges due to lack of features suitable for
traffic classification. If the traffic is unencrypted, deep packet
inspection (DPI) techniques, surveyed in [8], can help in clas-
sification. For example, port number can help in identifying
application groups, like browsing, email, maps [6]. Similarly,
by peering into the HTTP header, one can read the HTTP
User-agent field that shows the application name. Xu et al.
showed how to use this field to identify app sources [9].
Since setting this field is not mandatory for app developers,

TABLE I: Traffic Trace Collection Scenarios

App
Category

Application/s Total
Trace
Vol-
ume
(MB)

Resolution Trace
Dura-
tion
Range
(mins)

Band-
width
(Mbps)

Streaming
Video

YouTube 304 360p, 720p
5-40 0.5

1.0
4.0
16.0

HotStar 645 SD, HD
TED 188 HQ-off, on

Interactive
Video

Skype 442 Default
5-60Google Hangouts 230 Default

ooVoo 356 Default

the technique works well for popular apps. Other indirect
information, like in-app advertisement sources, can also be
used to reveal the flow identity, as shown by [10]. Statistical
methods can be used to identify patterns in app traffic. Dai et
al. showed that by executing different apps in an emulator and
gathering network traces from these executions, it is possible
to build signatures for identifying specific traffic sources [11].
Yao et al. reduced the overhead of building signatures in a
recent work where they used context of signatures to improve
identification accuracy and scalability [12]. Automatic gener-
ation of classifiers for traffic identification has been presented
in [13], [14]. AppPrint also uses extensive traffic observations
to build signatures based on header fields [15]. Since most of
these works rely on information that must be read from the
packets, they are ill suited for classifying encrypted traffic.

Video traffic tends to exhibit more strongly identifiable flow
patterns as compared to any generic traffic class. SkyTracer is
a tool that shows the patterns in Skype traffic [16]. Jesudasan et
al. have identified generic features across different versions of
Skype that can be used as features for statistical identification
of Skype flows [17]. Similarly, there have been characteriza-
tion of YouTube traffic for PC versions [18] and YouTube
mobile application [19]. Recently, Shi et al. also showed that
video source can be identified for encrypted traffic just by
analyzing only few timing features of the packet trace [20].
Our work builds on these works by carefully analyzing groups
of mobile video applications, and finding statistical properties
that can enable classification of flows from multiple video
sources simultaneously.

III. EXPERIMENTAL IN-LABORATORY SETUP

In order to study different characteristics of mobile video
traffic, we must collect traffic traces under controlled operating
conditions. Important control parameters include background

(a) YouTube (b) HotStar (c) TED

Fig. 4: Packet-size Distribution for Streaming Video Apps

(a) Skype (b) Google Hangouts

(c) ooVoo

Fig. 5: Packet-size Distribution for Interactive Video Apps

traffic, channel conditions, and traffic from advertisements
embedded in the videos. Background traffic could originate
from services, such as, Dropbox sync, Email sync, etc., which
requires to be weeded out. The variation in channel conditions
may lead to video streaming adapting to a different bit-rate and
different resolution. Similarly, advertisements within the actual
video content may distort content-agnostic pattern analysis.
Therefore, we have implemented an in-laboratory testbed to
enable controlled collection of the packet traces.

A. Testbed Setup

The tested setup is shown in Fig. 3. The end device connects
to the ISP’s network through a wireless router. The wireless
router is instrumented such that we can control the bandwidth
between the router and the end device. We used a Motorola
Moto X 2nd generation Android smartphone as the end device
where we execute each mobile video app separately. This
device is rooted to allow trace collection using tcpdump. An-
droid Terminal Emulator app provides the interface to
execute tcpdump. The router is an ASUS RT-3200AC router
with IEEE 802.11ac Wi-Fi standard. This router provides the
Adaptive QoS feature, which allows manual configuration
of the Download Bandwidth field to specify a controlled
download rate.

B. Data Collection Scenarios

We identified six popular mobile video applications on
Google Play – three from each video class (buffered and
interactive) – as shown in Table I. We capture download traffic
for these apps with various combinations of video lengths,
video resolutions, and network traffic bandwidth (by throttling
at the router). We also log associated events, such as start
and end time of embedded advertisements, and of re-buffering
instances. The packet traces collected for different scenarios
with these apps are analyzed in the following section.

IV. TRAFFIC PATTERN ANALYSIS OF VIDEO APP TRAFFIC

In this section, we analyze the traffic traces collected in our
testbed with respect to packet-size – a packet data agnostic
feature. Our objective is to understand whether the feature is
suitable to uniquely identify streaming video and interactive
video.

Preprocessing – Flow Segregation: In order to reliably
consider only downstream (server to client) data for our
analysis, and to weed out network control packets, we
divide the traffic into individual flows, and consider packets
belonging to downstream data flows only. We differentiate
the flows based on 5-tuple information <source IP,
source port, destination IP, destination
port, transport protocol>, present in the header
of each packet. It may be noted that such 5-tuple based flow
differentiation, most of the times, may not lead to app source
identification, because the video apps change their content
server frequently for load balancing and other policy related
reasons, whereas Skype like interactive apps use a super-peer
architecture where the peer gets changed at almost every
session.

A. Packet-size Distribution

We consider the transport layer (TCP or UDP) packet-size
for our analysis. We show the packet-size distributions (in
Fig. 4a (YouTube), Fig. 4b (HotStar) and Fig. 4c (TED))
for streaming video apps, and (in Fig. 5a (Skype), Fig. 5b
(Google Hangouts), Fig. 5c (ooVoo)) for interactive video
apps. As the streaming video apps are available in standard
definition (360p) and high definition (720p), we show the
distribution for both. From the figures, we make the following
observations: (1) For the streaming video apps, packet-size
saturates at a fixed value, which is the maximum transmission

UPSTREAM
TRAFFIC

User on Skype
call on

smart-watch

User watching
video on
YouTube

PERSONAL
MOBILE HUB

INTERNET APP IDENTIFIER

FLOW DIFFERENTIATOR
DATA-CONTROL CLASSIFIER

DATA PACKETS

STREAMING
TRAFFIC

CTRL PACKETS

LIMITED
QoS

FLOW CLASSIFIER

INTERACTIVE
TRAFFIC

IMPROVED
QoS

SERVICE DIFFERENTIATOR

DOWNSTREAM
TRAFFIC

WIRELESS GATEWAY

Fig. 6: System Architecture of MoViDiff shows an end device
connected to the wireless gateway. The gateway, which can
be a wireless router or any computer with a wireless NIC,
implements various software components enabling service
differentiation between streaming video and interactive video
applications running on the end device.

unit (MTU) for the transport layer packets at Wi-Fi. The
packet-size distribution shows a sharp transition indicating
that most of the packets are of large size (more than 1400
bytes). However, for the interactive video apps, most of the
packets are of lower sizes. (2) The packet-size distribution
shows hardly any variation with video quality (for streaming
videos) or network bandwidth. (3) Even though packet-size
distributions for individual apps are consistent, there is a
marked difference between the distributions of streaming video
apps and interactive video apps. Packet-size can, therefore, be
exploited to build an efficient traffic classification system.

Difference with respect to the aforementioned feature helps
us to understand and differentiate between the flows from an
interactive video app and a streaming video app. The detailed
system design for this classification and service differentiation
methodology for mobile video apps is discussed in the next
section.

V. MOVIDIFF: DESIGN AND IMPLEMENTATION

We present the system, called MoViDiff, which utilizes
the insights from traffic classification to implement a end
host specific service differentiation platform for mobile video
applications. The overall system architecture is shown in
Fig. 6. A smartphone, acting as a mobile hub, for personal
wearable devices, communicates with the wireless gateway
connected to the Internet. Functionalities specific to service
differentiation are implemented at the wireless gateway.

The system needs to detect launch of a video app at an
end device to trigger data agnostic techniques to regulate the
traffic of specific apps that may be tunneled over HTTPS or
encrypted. In order to identify the launch of an app, there

are two choices. One can implement a client module running
on the end host that notifies the gateway that an app has
been launched. This requires instrumenting the end device,
as well as, any smartphone app. Alternatively, it is possible
to detect app launch by monitoring the packet exchanges
during application connection initiation. Handshake packets
are unencrypted, and hence packet inspection technique works
well on such packets. Subsequently, we apply data agnostic
techniques on encrypted packets, where packet inspection
cannot be used.

We implement the wireless gateway on a HP ProBook
laptop equipped with Intel Core i5, 2.2 GHz processor, 8 GB
of RAM, and a 802.11ac network interface. It runs Ubuntu
16.04 LTS OS along with RTL8723BE network driver. We
configure the laptop to act as a Wi-Fi hotspot using the
HotSpot feature provided by the OS. The end device(s)
connects to the laptop acting as the wireless gateway. We
use the Linux iptables module, and Netfilterqueue
(NFQUEUE) for implementing MoViDiff. NFQUEUE is an
iptables and ip6tables target which delegates the decision
(accept, reject, or mark) on packets to a user-space software.
We use the netfilterqueue [21] Python module to
implement the user-space software. Packets reaching the
laptop are first intercepted by the following iptables
FORWARD rule:
iptables -I FORWARD -d <ip_range> -j
NFQUEUE --queue-num <queue_num>
All packets matched by the rule are enqueued in the target
NFQUEUE queue (specified by queue num in the rule).
We implement the user-space software by writing our own
Python module, which we call pymovidiff.

Next, we describe the key software components of MoViDiff,
which are implemented as part of pymovidiff.

A. App Identifier

App Identifier is required to identify an application that is
newly launched. We use a deep packet inspection (DPI) based
approach to analyze the handshake packets that are exchanged
when a network-based app is launched from an end device. An
app typically establishes a secure connection with the server
by using a cipher data exchange protocol over SSL. Since
these packets are unencrypted, packet inspection is possible on
these packets. The SSL server certificate signature is unique
for an app, although the actual server can be geographically
load balanced. We use DPI to read the SSL server certificate
signature, and accordingly identify the app. This is an one-
time low overhead process to check whether the app belongs
to one of our intended video apps.

The App Identifier module runs in the background, and
performs a lazy read on the header of each packet to ascertain
if the protocol indicates a certificate exchange. In case it finds
one that does, it springs into action, and inspects the packet
deeper to identify the origin app. It then communicates this
information to the Flow Differentiator module, which triggers
traffic differentiation accordingly. The App Identifier goes back
to its lazy mode thereafter.

B. Flow Differentiator

After identifying that a specific app has been launched, the
task is to identify the data packets that belong to that app.
There are two tasks that are performed, in order. The Data-
Control Classifier segregates the control packets of a flow from
its data packets. The Flow Classifier then matches the data
packets to a specific application – one of the currently running
applications, as communicated by the App Identifier. We use
a supervised support vector machine (SVM) for classification
in each of these cases, the implementation details of which
are provided in § VI.

1) Data-Control Classifier: In this study, we refer to net-
work control packets, such as ARP, DNS, IGMP, ICMP, NTP,
DB-LSP-DISC (Dropbox Lan Sync Protocol), etc., as control
packets. Control packets do not carry any video content, but
appear in large numbers in the flow. By isolating the control
packets from data packets (packets which carry video data
in their payloads), we can design the flow signature for an
app more accurately. The data-control binary classifier uses a
SVM with packet-size as the lone feature. This is based on
our observation that data packets typically tend to be larger in
size as compared to control packets; although certain types of
control packets have comparable sizes with data packets, those
tend to have fixed sizes, and are therefore easily identifiable.

2) Flow Classifier: The Flow Classifier is the data packet
classifier that accepts data packets as input, and based on a
feature, classifies each packet into originating from one of the
considered traffic classes (streaming video or interactive video
traffic). This module is implemented as a binary SVM, where
two competing (for bandwidth) video apps (one streaming
and one interactive) are active. The feature, i.e., packet-size,
identified based on traffic analysis (§ IV), is used for classifi-
cation. Since we assume that the flows can be encrypted, we
cannot look inside the packet headers. However, NFQUEUE
provides an API which can extract the transport layer packet-
size. We use this API in the packet-size detection module
inside pymovidiff.

C. Service Differentiator

The Service Differentiator module regulates bandwidth of-
fered to individual apps by scheduling release of data packets.
A producer thread in pymovidiff passes each packet to the
classification engine. The classifier inserts the packet into
either the streaming video or the interactive video user-level
queues. A consumer thread dequeues a packet, and forwards
to the outgoing link, based upon a user-defined configuration
parameter λ. λ denotes the priority ratio that the user wants
to associate with a specific application; e.g., if Skype and
YouTube are being run simultaneously, Skype is serviced with
λ times more priority than YouTube.

VI. EVALUATION

We evaluate MoViDiff in two phases: first, we evaluate the
performance of the system as a service differentiator over
an experimental testbed; then, we evaluate it as a traffic
differentiator.

A. MoViDiff Performance as a Service Differentiator

In order to evaluate MoViDiff as a service differentia-
tion system, we use two different Moto X Android phones
connected to the laptop acting as a wireless gateway; one
plays a YouTube video, while the other plays Skype chat.
MoViDiff performs bandwidth differentiation between Skype
and YouTube traffic originating from the phones.

Service Differentiation Performance: We let the two apps
run without intervention for the first 50 seconds. At the
50th second, we enable MoViDiff, specifying higher priority
for Skype and lower priority for YouTube. For the next 50
seconds, the apps run with bandwidths as provisioned by
MoViDiff. We repeat the experiment for λ = 10 and λ = 30,
where λ is the configuration parameter as defined in § V. The
results are shown in Fig. 7a and Fig. 7b.

We observe that after the 50th second, i.e. when MoViDiff
has been enabled, the average bandwidth for YouTube drops
from 106658 bps to 56594 bps (47% drop) when λ=10, while
it improves from 2726 bps to 3765 bps (38% rise) for Skype.
This phenomenon is amplified when λ=30; average bandwidth
for YouTube drops from 113917 bps to 27408 bps (76% drop),
while for Skype it goes up from 2759 bps to 4161 bps (51%
rise). This shows MoViDiff’s capability of prioritizing traffic
originating from different apps, according to user-specified
priority.

Impact on Video Quality: Bandwidth differentiation for
video apps is expected to impact video quality of the streaming
app. In order to understand the nature of this impact, we record
the same 1-minute segment of a YouTube video playing on a
smartphone under 3 conditions: (i) without MoViDiff, (ii) with
MoViDiff when λ=10, and (iii) with MoViDiff when λ=30.
We compare the PSNR (Peak Signal-to-Noise Ratio) values
(using OpenCV [22]) for case (ii) vs. (i) and case (iii) vs (i),
respectively. The results are shown in Fig. 7c.

Note that higher PSNR values indicate higher video quality.
We observe that PSNR values are consistently higher (average
of 32.8) when λ=10 than when λ=30 (average of 21.9). Thus,
quality degradation is little in the former case, and more
pronounced in the latter. This shows that the user can control
her quality of experience by setting an appropriate value of λ.

The analysis of PSNR provides an interesting insight on
MoViDiff. Because of the adaptive streaming strategy adopted
by most streaming video apps (e.g., YouTube, HotStar, TED),
a limited drop in available bandwidth does not affect their
quality significantly, whereas the additional bandwidth pro-
vided to the interactive apps can boost up their performance,
as those are mostly based on real-time transport protocols.
The user can exercise her choice (by tuning the parameter
λ) regarding how much she is willing to compromise with
the quality of streaming video apps, in order to improve the
quality of interactive video apps.

B. MoViDiff Performance as a Traffic Classifier

In this subsection, we present the performance of the
individual classifiers used in our system. First we evaluate
the data-control classifier, followed by the flow classifier. The

(a) Bandwidth Change for Skype (b) Bandwidth Change for YouTube (c) PSNR Variation for YouTube

Fig. 7: Effect of Service Differentiation due to MoViDiff. The bandwidth allocation of preferred application Skype increases
while for YouTube it decreases. Despite bandwidth allocation, the YouTube stream is acceptable as shown by the PSNR.

TABLE II: Data-Control Classifier Performance

App Class Classes Average
Precision

Average
Recall

Average
F1-Score

Average
Accuracy

Streaming
Video Apps

Data 1.00 1.00 1.00
1.00Control 1.00 1.00 1.00

Interactive
Video Apps

Data 1.00 1.00 0.99
0.99Control 1.00 1.00 0.99

TABLE III: Classification Performance of MoViDiff

Classes Precision Recall F1-Score Accuracy
YouTube 1.00 0.89 0.94

0.92Skype 0.89 0.96 0.92

YouTube 1.00 0.99 0.99
0.98GoogleHangouts 0.99 0.98 0.98

YouTube 0.99 0.99 0.99
0.97ooVoo 0.99 0.97 0.98

HotStar 0.91 0.98 0.94
0.92Skype 0.98 0.86 0.91

HotStar 1.00 0.98 0.99
0.97GoogleHangouts 0.99 0.97 0.98

HotStar 0.99 0.99 0.99
0.97ooVoo 1.00 0.97 0.98

TED 1.00 0.95 0.97
0.95Skype 0.95 0.95 0.95

TED 1.00 1.00 1.00
0.98GoogleHangouts 1.00 0.98 0.99

TED 0.99 0.99 0.99
0.98ooVoo 1.00 0.97 0.98

SVM module used is as implemented in scikit-learn [23],
with C = 1.0 and radial basis function (RBF) kernel. In
every case, 70% of available data is used for training, and
the remaining 30% for testing. Equal number of samples have
been considered for each class to rule out class imbalance.

1) Performance of the Data-Control Classifier: In order to
evaluate performance of the data-control classifier, we train
and test a SVM with packet-size as the only feature. The
results are summarized in Table II. The classifier performs
remarkably well for both cases – streaming video and inter-
active video traffic. The minimum classification accuracy is
99%, which reaches up to 100%. This can be attributed to the
fact that control packets are typically of lesser size than data
packets, irrespective of the source app.

2) Classification between a Buffered and Interactive Video
App: We investigate the classification performance of the flow
classifier for pairs of streaming and interactive apps. In all
cases, we train a SVM with packet-size as the only feature
(as done in [20]). The results are presented in Table III. It

is observed that the classifier works extremely well for each
of the pairs, with classification accuracy values in the range
between 0.92 and 0.98. This is made possible by the distinct
sizes of data packets generated by streaming video apps and
interactive video apps. The figures and analysis presented in
sub-section IV-A support this observation.

VII. CONCLUSION

Ability to identify the application source of each traffic flow
going through a gateway has many applications. However, for
mobile applications, such classification is challenging since
apps use HTTP/HTTPS for encapsulating traffic. Typical Deep
packet inspection (DPI) based methods fail to recognize the
streams. In this work, we focused on mobile video applica-
tions, and showed that characteristics of the flows originating
from these apps differ with respect to packet-size, which
is a packet data agnostic feature. We used this feature to
train classifiers that can identify flows belonging to streaming
video and interactive video. The classifier forms the core
of a service differentiation platform, called MoViDiff, that
runs on a wireless gateway, and apportions bandwidth among
different video applications from an end device as per user
preference. We show that MoViDiff is able to achieve an
average classification accuracy of 96%, with the maximum
accuracy reaching as high as 98%.

VIII. FUTURE DIRECTIONS

In this paper, we limit our study to the possibility and
efficacy of classification between streaming and interactive
video apps, in the absence of any kind of background traffic.
Such background traffic may originate from browsing, email,
data sync apps such as Dropbox, etc. In the future, we shall
expand our study to include classification between various
video sources even in the presence of noisy mixed background
traffic. We realize that in such cases, packet-size may not
suffice as a feature, and we may need to explore other packet
data agnostic features, such as patterns in inter-arrival time,
etc. Such directions would serve as interesting future work.

REFERENCES

[1] L. E. Talavera, M. Endler, I. Vasconcelos, R. Vasconcelos, M. Cunha,
and F. J. d. S. e Silva, “The mobile hub concept: Enabling applications
for the internet of mobile things,” in Pervasive Computing and Com-
munication Workshops (PerCom Workshops), 2015 IEEE International
Conference on. IEEE, 2015, pp. 123–128.

[2] “You can now skype from your android wear smart-
watch.” [Online]. Available: https://techcrunch.com/2015/09/29/
you-can-now-skype-from-your-android-wear-smartwatch/

[3] “Reddit (longdistance): Movie and skype - how do you do it?”
[Online]. Available: https://www.reddit.com/r/LongDistance/comments/
2mfrqy/movie and skype how do you do it/

[4] “Rabbit.” [Online]. Available: https://www.rabb.it/
[5] A. Callado, C. Kamienski, G. Szabó, B. P. Gerö, J. Kelner, S. Fernandes,

and D. Sadok, “A survey on internet traffic identification,” Communica-
tions Surveys & Tutorials, IEEE, vol. 11, no. 3, pp. 37–52, 2009.

[6] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A first look at traffic on smartphones,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. ACM, 2010, pp. 281–
287.

[7] A. Gember, A. Anand, and A. Akella, “A comparative study of handheld
and non-handheld traffic in campus wi-fi networks,” in Passive and
Active Measurement. Springer, 2011, pp. 173–183.

[8] M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and K. Hanssgen,
“A survey of payload-based traffic classification approaches,” Commu-
nications Surveys & Tutorials, IEEE, vol. 16, no. 2, pp. 1135–1156,
2014.

[9] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman,
“Identifying diverse usage behaviors of smartphone apps,” in Proceed-
ings of the 2011 ACM SIGCOMM conference on Internet measurement
conference. ACM, 2011, pp. 329–344.

[10] A. Tongaonkar, S. Dai, A. Nucci, and D. Song, “Understanding mobile
app usage patterns using in-app advertisements,” in Passive and Active
Measurement, 2013.

[11] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Networkpro-
filer: Towards automatic fingerprinting of android apps,” in INFOCOM,
2013 Proceedings IEEE. IEEE, 2013, pp. 809–817.

[12] H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, and Z. M. Mao, “SAMPLES:
Self adaptive mining of persistent lexical snippets for classifying mobile
application traffic,” in Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’15,
2015, pp. 439–451.

[13] Y. Choi, J. Y. Chung, B. Park, and J. W.-K. Hong, “Automated classifier
generation for application-level mobile traffic identification,” in Network
Operations and Management Symposium (NOMS), 2012 IEEE, 2012, pp.
1075–1081.

[14] Q. Xu, Y. Liao, S. Miskovic, M. Baldi, Z. M. Mao, A. Nucci, and
T. Andrews, “Automatic generation of mobile app signatures from traffic
observations,” in Proceedings of IEEE INFOCOM 2015, ser. INFOCOM
’15, 2015.

[15] S. Miskovic, G. M. Lee, Y. Liao, and M. Baldi, “AppPrint: Automatic
fingerprinting of mobile applications in network traffic,” in Proceedings
of Passive and Active Measurement Conference, 2015, pp. 57–69.

[16] Z. Yuan, C. Du, X. Chen, D. Wang, and Y. Xue, “Skytracer: Towards
fine-grained identification for skype traffic via sequence signatures,” in
Computing, Networking and Communications (ICNC), 2014 Interna-
tional Conference on. IEEE, 2014, pp. 1–5.

[17] R. N. Jesudasan, P. Branch, and J. But, “Generic attributes for skype
identification using machine learning,” Centre for Advanced Internet Ar-
chitectures, Swinburne University of Technology, Melbourne, Australia,
Tech. Rep. A, vol. 100820, p. 20, 2010.

[18] P. Ameigeiras, J. J. Ramos-Munoz, J. Navarro-Ortiz, and J. M. Lopez-
Soler, “Analysis and modelling of youtube traffic,” Transactions on
Emerging Telecommunications Technologies, vol. 23, no. 4, pp. 360–
377, 2012.

[19] J. J. Ramos-Munoz, J. Prados-Garzon, P. Ameigeiras, J. Navarro-Ortiz,
and J. M. López-Soler, “Characteristics of mobile youtube traffic,”
Wireless Communications, IEEE, vol. 21, no. 1, pp. 18–25, 2014.

[20] Y. Shi and S. Biswas, “Protocol-independent identification of encrypted
video traffic sources using traffic analysis,” in 2016 IEEE International
Conference on Communications (ICC). IEEE, 2016, pp. 1–6.

[21] “The netfilter.org libnetfilter queue project.” [Online]. Available:
http://www.netfilter.org/projects/libnetfilter queue/index.html

[22] “Video input with opencv and similarity measurement.”
[Online]. Available: http://docs.opencv.org/2.4/doc/tutorials/highgui/
video-input-psnr-ssim/video-input-psnr-ssim.html

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

