














dðdDCÞ þ sCðBÞ ¼ ð0:5 þ 10Þ ¼ 10:5, and is entered into

CT as (10, 10.5). At time 20 units, A and C encounter; as a

result sAðBÞ changes as sAðBÞ ¼ dðdACÞ þ sCðBÞ ¼
ð0:5 þ 20Þ ¼ 20:5, whereas sAðDÞ changes as sAðDÞ ¼
dðdACÞ þ sCðDÞ ¼ ð0:5 þ 10Þ ¼ 10:5. The records (20,

20.5) and (20, 10.5) are inserted into CT. Following a

similar procedure, the records (40, 20.5), (40, 11),

(60, 20.5), (60, 40.5), (70, 10.5) are generated for

sBðCÞ; sBðDÞ; sDðBÞ; sDðCÞ; sBðAÞ respectively.

Let us consider the LT, LER, and CT tables above. Note

that sdeclaredðP;QÞ indicates the utility value declared by

node P for node Q during the Focus phase, whereas

scalculatedðP;QÞ indicates the utility value of node P for

node Q as computed by the Trusted node. The following

cases may arise:

1. Case 1 The trusted node encounters C next. C gives the

time of encounter with A as 90. The trusted node finds

discrepancy since log says 95. Since a malicious node

will try to decrease its utility value, 95 is a more

appropriate value to perform maliciousness. Thus, The

trusted node concludes that 90 is the correct value and

since A sent 95, it is tagged as malicious. A record

Fig. 2 Event Timeline used to illustrate focus maliciousness

detection

Table 5 Trusted node—Log Table (LT) in focus maliciousness

detection example

Interacting

node pair

Time of latest

encounter

Confirmation

A, B 40 Yes

A, C 20 Yes

A, D 60 Yes

B, C 0 Yes

B, D 70 Yes

C, D 10 Yes

A, C 95 No

B, D 115 No

Table 6 Trusted node—Latest Encounter Record (LER) table in

focus maliciousness detection example

Interacting

node pair

Time of

latest

encounter

A, B 40

A, C 20

A, D 60

B, C 0

B, D 70

C, D 10

Table 7 Trusted node—Change by Transitivity (CT) Table in focus

maliciousness detection example

A B C D

A Invalid (20, 20.5) – (20, 10.5)

B (70, 10.5) Invalid (40, 20.5) (40, 11)

C – – Invalid -

D – (60, 20.5) (60, 40.5) Invalid

Table 2 Network encounter

table with node A after E5 in

spray maliciousness detection

Sender Receiver Time of encounter Message ID Copies with sender Copies with receiver

A B 15 M-702 3 2

A C 20 M-702 2 1

A Sink-node 30 M-702 0 2

Table 3 Network encounter

table with node B (malicious)

after E5 in spray maliciousness

detection

Sender Receiver Time of encounter Message ID Copies with sender Copies with receiver

A B 15 M-702 3 2

C B 50 M-893 2 1

Table 4 Network encounter

table with node C after E5 in

spray maliciousness detection

Sender Receiver Time of encounter Message ID Copies with sender Copies with receiver

A C 20 M-702 2 1

C Sink-node 30 M-702 0 1

C B 50 M-893 2 1

Wireless Netw

123



with (A,C,90) is inserted in LER and corresponding

CT computations are done.

2. Case 2 The trusted node is in detection mode at time 90.

The trusted node is checking sanity for node A, and is

currently considering node B as the peer of node A. The

trusted node can choose between the record present for

the node pair (A,B) in LER and the one present in CT.

Since the time of update in case of the LER is 40, and that

in case of CT is 20, the former is considered, it being the

more recent record. Thus, the trusted node calculates

scalculatedðA;BÞ as (90 - 40) ¼ 50. Suppose

sdeclaredðA;BÞ is 45, i.e., A has decided to reduce its

utility value for B by 5 units as an exhibition of its

malicious behaviour. The trusted node detects anomaly

and immediately tags A as malicious.

3. Case 3 The trusted node is in detection mode at time 90.

The trusted node is checking sanity for node D, and is

currently considering node C as the peer of node D. The

trusted node can choose between the record present for

the node pair (D,C) in LER and the one present in CT.

Since the time of update in case of the LER is 10, and that

in case of CT is 60, the latter is considered, it being the

more recent record. Thus, The trusted node calculates

scalculatedðD;CÞ as (90 - 60) þ 40.5 ¼ 70.5. Suppose

sdeclaredðD;CÞ is 60, i.e., D has decided to reduce its

utility value for C by 10.5 units as an exhibition of its

malicious behaviour. The trusted node detects anomaly

and tags D as malicious.

The next section presents the algorithms designed based

on the detection mechanism discussed in this section.

5 Algorithms and combat strategies

Before the network starts functioning, it is essential for

each participating node and the trusted node to be aware

about all other participating nodes; otherwise, external

intrusion would become rampant and the network would

suffer from malicious activities by intruders. To ensure

this, there is an Authentication Authority (AA) which

assigns a unique node ID and a set of unique public and

private keys to each participating regular node, and entrusts

the specialized task of detection to the Trusted node. Also,

AA ensures that each node (including TN) is preloaded

with the list of node IDs all participating nodes, as well as

their corresponding public keys. We assume that either this

list does not change throughout the working of the DTN, or

if there are additions or subtractions, the AA is able to

change appropriately settings of all nodes.

Whenever a node generates a record for its NET corre-

sponding to an encounter with another node, it is signed and

encrypted using its pair of public and private keys. Such an

entry can be decrypted by another authenticated node using

its set of keys. Securing information using such techniques is

a different field altogether and we do not delve into the details

of such techniques in this paper; rather we state that by using

such a technique, we can ensure that modification of the

contents of any entry is rendered impossible, thus securing

the network from information forging attacks.

Furthermore, let us assume that AA generates a unique

sink node ID, which is never assigned to any participating

node, but is included in the list loaded into all nodes.

Whenever a node is forced to purge a message from its

memory due to buffer constraints, it generates an entry with

this sink node ID as the receiver node. During detection, the

Trusted Node counts all such entries and includes this fig-

ure in its evaluation to ensure that there is no false report of

malicious activity resulting from purging due to buffer

constraints rather than due to malicious intentions.

The following subsections present the detailed detection

algorithms.

5.1 Spray phase detection algorithm

The Spray phase detection algorithm, as given in Algo-

rithm 1, is largely self-explanatory. Trusted node first finds

out all the unique message IDs that the currently encoun-

tered node has held over time, by looping through the

Message ID column in its NET. Once done, it loops

through all unique message IDs, and for each of those,

checks whether all tokens for it have been accounted for. If

so, it proceeds to the Focus phase detection algorithms. If

not so, it tags the currently encountered node as malicious.

5.2 Focus phase detection algorithm–Information

Gathering Mode

Algorithm 1: Spray Phase Detection Algo-
rithm

/∗Key: TN has encountered with node P, and
obtains NET from it ∗/
for (Every unique message ID that is present in
P’s NET) do

if (no.of copies received - no.of copies
delivered - no.of entries to sink node) <> 0)
then

Tag P as malicious, and add to MIL;
end

end
else

Follow focus maliciousness detection
mechanism;

end

Wireless Netw

123



Algorithm 2: Focus Phase (Information
Gathering Mode)

// TN has encountered P, obtains encounter
records from its NET
// DeclaredUtilityVector: vector of vectors for
declared util. values
for (Every encounter record obtained from NET
of P) do

X := Node encountered by P;
T := Time of encounter between P and X;
if (any record for node pair (X,P) is present
in LT) then

Obtain the Log-Table-Time (LTtime)
value for (X,P);
if (LTtime(X,P) = T) then

Remove record LT(X,P,T) and insert
into LER record (X,P,T);

end
else

// Instant detection for mismatch in
LT values
if (LTtime(X,P) > T ) then

Remove record LT(X,P,T) and
insert into LER record (X,P,T);
Tag X as malicious;

end
else if (LTtime(X,P) < T) then

Remove record LT(X,P,T) and
insert into LER record
(X,P,LTtime(X,P));
Tag P as malicious;

end
end
Obtain LER value for the node pair (P,X);
if (LERtime(X,P) > T) then

Continue, since TN already has latest
value;

end
else

Update LER(X,Y) with T;
Calculate transitivity changes, if any,
due to the current encounter, as per
equation 1;
Update CT with these calculated
changes;

end
end
else

Insert record for node pair (X,P) in LT;
end

end
Obtain τdeclared(P, X) for every node X other
than P from P’s table storing utility values for
other nodes;
Store all these values in DeclaredUtilityVector[P];
Add the current time T ∗ to this vector;

Algorithm 2 describes the algorithm that the TN exe-

cutes when it is in the information gathering mode.

Suppose the TN has encountered with a node symbolized

by P. It obtains the encounter records from the NET of P at

the very beginning. Now TN loops through every

encounter of P as found in the encounter records, and

performs a set of tasks in each iteration.

Algorithm 3: Focus Phase (Detection
Mode)

/∗ LERtime(X,Y) is the time of latest encounter
between X and Y according to LER ∗/

/∗ CTtime(X,Y) is the time of change by
transitivity according to CT ∗/

/∗ CTvalue(X,Y) is the τX(Y ) value at
CTtime(X,Y) according to CT ∗/

for (Every node X in the network) do
for (Every node Y other than node X) do

Trusted node (TN) sets τdeclared(X, Y ) =
DeclaredUtilityV ector[X ][Y ] +
{CurrentT ime − T ∗(X)};
if (LERtime(X,Y) >= CTtime(X,Y))
then

TN sets τcalculated(X, Y ) =
CurrentT ime − LERtime(X, Y );

end
else

TN sets
τcalculated(X, Y ) = CTvalue(X, Y ) +
{CurrentT ime − CTtime(X, Y )};

end
if (τdeclared(X, Y ) <> τcalculated(X, Y ))
then

Tag X as malicious;
end
else

Abort and continue;
end

end
end

Suppose that the node that P had encountered, as found

in one of the iterations, is represented as X, and let the time

of encounter between P and X (as found in EH obtained

from P) be T. Now, the TN searches in the Log Table (LT)

for an unconfirmed encounter entry for the nodes P and X.

If such a record is found, then TN has to ascertain

whether this newly obtained record from EH matches with

the record found from LT. To this end, it obtains the Log-

Table-Time (LTtime) for the LT record of P and X. If this

LTtime value for the node pair (P,X) matches with the time

T noted from the EH record, then the record is genuine and

has been confirmed. The TN immediately deletes the

unconfirmed record LT(X,P,T) from the Log Table (LT)

and inserts a record with the same values of attributes into

Wireless Netw

123



the Latest Encounter Record (LER) table, thereby con-

firming it.

However, if LTtime(X,P) does not match with the noted

time T, then the TN assumes that one of the 2 nodes—X or

P—is lying, i.e., giving out wrong information. Since a

node would give out wrong information only for selfish

reasons, we assume that the node which shows a more

recent encounter than the other, is the one which is

behaving maliciously, since it can get a distinct advantage

in utility value by doing so.

TN now determines which one of the 2 nodes has

declared a more recent encounter time. If it is P, i.e., the

value LT(P,X) is more recent than the time T, then TN

assumes that T is correct, and inserts a record into the LER

with values (X,P,T). The unconfirmed record LT(X,P,T) is

removed. X is then tagged as malicious. If on the other

hand, it is X, i.e., the value T is more recent, then TN

assumes that the time of encounter LT(P,X) is correct, and

inserts a record into LER with values (X,P,LT(P,X)). The

unconfirmed record LT(X,P,T) is removed. P is then tagged

as a malicious node. This phase can be called the instant

detection phase since TN does not have to be in its

detection mode for such a detection.

Otherwise, if no Log Table (LT) record for P and X is

present, then TN searches the LER for the record against

nodes P and X. The time of encounter LERtime(P,X) is

obtained from this record.

If LERtime(P,X) is more recent than or as recent as T,

then TN concludes that it already has the latest information

about the node pair (P,X), and moves on to the next step.

However, if T is more recent than LERtime(P,X), then

TN has to update its tables with this latest information. The

record LER(P,X,LERtime(P,X)) is now replaced by the

record LER(P,X,T). Next, TN calculates the changes due to

transitivity because of the aforementioned update in time of

encounter. Once it has computed all such changes, it

updates its Change by Transitivity (CT) table with the

latest values.

Once all the updates are complete, TN enquires P for

the utility values it stores for all other nodes in the net-

work. These utility values are the ones that P would

declare when another regular node with a message copy

tries to decide whether P is a better relay to the desti-

nation, during the focus phase. These values (the value

for node X is represented by sdeclaredðP;XÞ) are stored in a

vector of vectors known as the DeclaredUtilityVector.

Each vector in this vector of vectors, other than con-

taining N slots for declared utility values (N being the

number of nodes in the network), also contains a slot for

the time when the current vector had been updated last.

This slot is set with the current clock time T� for the

vector corresponding to node P.

The information gathering mode is now complete. TN

closes the connection and moves on to find another regular

node to perform the same operations on.

5.3 Focus phase detection algorithm—Detection

mode

During the detection mode, as shown in Algorithm 3, TN

makes extensive use of its LER and CT tables. It iterates

through the entire set of nodes, generating all possible

combinations of node-pairs. The node-pairs were arranged

in a matrix where an element i,j corresponds to the com-

parison of node i with node j. Since comparison of a node

to itself is absurd, when the row value is equal to the

column value, the TN skips the set of instructions and

moves on to the next iteration.

It is also important to note that the iterations are in a

row-major fashion, such that, if the first node down a

column is A, then all the combinations of node pairs with A

as the first node are evaluated first (except the absurd (A,A)

pair). Only when A has been evaluated against all the N

(total number of nodes in the network) nodes, TN moves on

to the next node down the column.

Let us assume that one such non-absurd iteration

involves the node pair X and Y (X on the row, and Y on the

column). TN sets sdeclaredðX; YÞ as:

sdeclaredðX; YÞ ¼ DUV ½X�½Y � þ fCurrentTime� T�ðXÞg

where DUV is the DeclaredUtilityVector, DUV[X][Y]

represents the utility value recorded in the vector corre-

sponding to node X for the node Y, T�ðXÞ is the time of

record in the DUV for the vector corresponding to node X.

The previous sub-section has already introduced these

parameters.

Now, there can be two cases—either the record in LER

is the most updated record for node pair (X,Y), or the one

in CT is the most updated one. If LERtime(X,Y), i.e., the

time of latest encounter between X and Y, is more recent

than CTtime(X,Y), i.e., the time of latest change by transi-

tivity for pair (X,Y), then the calculated utility value is

merely the difference of the current time and the time of

encounter LERtime(X,Y). Thus, scalculatedðX; YÞ is set as:

scalculatedðX; YÞ ¼ CurrentTime� LERtimeðX; YÞ

Otherwise, if CTtime(X,Y) is more recent than

LERtime(X,Y), TN concludes that the most recent change in

utility value has been by transitivity rather than direct

contact. So it sets scalculatedðX; YÞ as:

scalculatedðX; YÞ ¼ CTvalueðX; YÞ þ fCurrentTime� CTtimeðX; YÞg

where CTvalue(X,Y) is the updated utility value due to the

latest change by transitivity.

Wireless Netw

123























scientist and received ACM SIGCOMM travel grant in 2008. He has

published 25 papers in different International Conferences/Journals,

which include Physical Review E, ACM MobiCom, ACM SIG-

COMM, ACM DEV, etc. His broad interests lie in developing tech-

nologies for developing regions with specific focus on Peer to Peer

Network, Mobile Ad-hoc Network, Delay Tolerant Network, Service-

oriented Architecture, etc.

Rohit Verma is a Ph.D. Scholar

in the Department of Computer

Science and Engineering at

Indian Institute of Technology

Kharagpur, India. He received

his B.Tech. in the Department

of Computer Science and Engi-

neering from National Institute

of Technology, Durgapur, India

in 2013. His research interests

include computer systems,

mobile computing and delay

tolerant networks. He has sev-

eral international conference

publications, such as in IEEE

INFOCOM and MobiSys Workshop.

Satadal Sengupta is a Master

of Science (MS) by Research

student and a Junior Research

Fellow in the Department of

Computer Science and Engi-

neering at Indian Institute of

Technology Kharagpur, India.

He is currently a part of the

Complex Networks Research

Group (CNeRG) and works with

Dr. Sandip Chakraborty and

Prof. (Dr.) Niloy Ganguly. His

research interests lie in the fields

of Mobile Computing and

Wireless Networks. Satadal

completed his Bachelor of Technology in Computer Science and

Engineering from National Institute of Technology Durgapur, India in

2013. He worked as an Associate Applications Developer in Oracle

Financial Services Software Ltd., Bangalore, India from September,

2013 to April, 2015. Satadal has also worked with Microsoft IT,

Hyderabad, India as a Software Development Engineer (SDE) during

his summer internship from May to July, 2012.

Kartikeya Singh is presently

working as a Senior Software

Developer at HiveMinds Inno-

vative Market Solutions. He has

completed his B.Tech. from

NIT Durgapur in Computer

Science and Engineering by

2014. His areas of research are

Real Time Big Data Analysis,

Delay Tolerant Networks and

Network Security, Rule Engine

Design, etc.

Vivek Sinha is presently work-

ing as a Software Development

Engineer II at Via.com. He has

completed his B.Tech. from

NIT Durgapur in Computer

Science and Engineering, in

2014. His areas of research and

work are Data mining - which

includes Big Data Analysis and

Machine Learning, Delay Tol-

erant Networks, and Network

Security.

Sajal K. Das is the chair of the

Computer Science department

and the Daniel St. Clair

Endowed Chair Professor at the

Missouri University of Science

and Technology (MST). He has

completed B.S. Degree in

Computer Science from Cal-

cutta University in 1983 and

M.S. degree in Computer Sci-

ence from Indian Institute of

Science in Bangalore in 1984.

He has completed Ph.D. degree

in Computer Science from

University of Central Florida in

1988. During 2008–2011, he served the US National Science Foun-

dation as a Program Director in the division of Computer Networks

and Systems. His research interests include wireless and sensor net-

works, mobile and pervasive computing, smart environments and

smart health care, pervasive security, biological networking, applied

graph theory and game theory. Das has published over 650 papers,

gathering 15,500? citations according to Google Scholar, and 50

invited book chapters. He holds 5 US patents, coauthored 51 book

chapters and four books titled Smart Environments: Technology,

Protocols, and Applications (2005), Handbook on Securing Cyber-

Physical Critical Infrastructure: Foundations and Challenges (2012),

Mobile Agents in Distributed Computing and Networking (2012), and

Principles of Cyber-Physical Systems (2016). His h-index is 72 with

more than 20,500 citations according to Google Scholar. Dr. Das

received 10 Best Paper Awards in such prestigious conferences as

ACM MobiCom’99, IEEE PerCom’06 and IEEE SmrtGridComm’12.

Wireless Netw

123


